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Case study

Randomized Phase lll trial in patients with metastatic
CRC in 2nd & 3" |ines.

441 patients randomized to Test or Control.

Power of 90% on the overall survival for Test vs
Control to evidence HR=0.67. The objective response
rate was also part of the inferential procedure

Cox proportional-hazard model to analyze OS and
Logistic regression to analyze ORR adjusted on :

» ECOG (0,1),
» Prior use of a medication (Y/N),
» Source of a pharmaceutical component (EU,US).
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Case study

» Efficacy demonstrated and MAA in Europe

oS ORR
HR=0.60 p=0.0001 |0-R=13.7 p<0.0001

» Subgroup analysis to investigate potential
sources of heterogeneity in the treatment effect

v 18 biomarkers as candidate predictors for
demography, baseline clinical status, and
biological data
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Method SIDES

« Subgroup Identification based on Differential Effect Search

» Main features:

J Recursive hierarchical procedure to obtain a
classification tree

1 Identification of the promising subgroups based on
an optimal cutoff value of a biomarker

 Control of the multiplicities to limit the type 1 error
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Method SIDES

* Classification tree

» L levels and M subgroups by parent node

0 E.g., L=2, M=3

Overall

S1

S2

S11

S12

S13

» Recursive method where child becomes In

S3

S31

S32

turn parent for the next iteration
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Method SIDES

» |dentification of the promising subgroups

» Effect-size estimated on the z-scale (score)

] Continuous endpoint

v t-test/ ANCOVA
- Binary endpoint

v’ Z-test for proportion / Logistic regression
J Time-to-event endpoint

v Log-rank test / Cox model
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Method SIDES

* |dentification of the promising subgroups

» The differential effect D(X, c) is used based on
a cutoff value c of a biomarker X.

 Difference in effect size (ES) between the X
values above (+) and below (-) the value c:

v & isthe CDF of N(0,1)

J Easier to use -log D(X, c)
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Method SIDES

* |dentification of a promising subgroup

J Define a set of cutoff values of a biomarker Xj,
] Calculate the differential effect for each partitioning,

[ The promising subgroup is identified based on the
maximum differential effect.

» Graphical representation of -log D(X, c;)
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Method SIDES

» Differential effect on the log p-value scale

» Probability of identifying subgroups depends on
the number of partitionings

1 Multiplicity of cutoffs controlled with Simes method

Differential Effect

-log(P-valeur)

40 50 60 70 80 a0

© Xi values
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Method SIDES regular

* Determination of the classification tree

» For each parent node, 18 candidate subgroups
based on 18 biomarkers

» SIDES regular

J Select the M most promising subgroups based
on the strongest “corrected” differential effects,

- Prune by keeping promising subgroups
according to a value of y (O<y<1) such that:

v pchild = Y pparent
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Method SIDEScreen

»  Multiplicity of candidate biomarkers

» Selection of the most influencing biomarkers
using the variable importance (VI) to reduce
the subgroup space

1 SIDEScreen fixed
v Based on the greater VI,

1 SIDEScreen adaptive
v Based on the statistical significance of VI.
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Method SIDEScreen

» VI reflects the predictive potential of the
candidate biomarker

» Determine the classification tree using SIDES
regular with y=1

» For each biomarker X, sum the differential
effects inthe m final subgroups, such that:

m

1
VI(X,) = m z —log(D (X, cix))

k=1
where c;, is the optimal cutoff.
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Method SIDEScreen adaptive

+ Selection of biomarkers based on the
statistical significance of VI

» Distribution of VI under the hypothesis of
no predictors

J Permute randomized treatments in the
overall sample,

1 Keep the maximum VI among the biomarkers
and derive the distribution under hypothesis,

1 Based on a pre-defined significance level,
select the predictors with significant VI value.
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Method SIDES

Multiplicity of the final subgroups for the

treatment effect

» Distribution of the treatment effect p-values
under the hypothesis of no treatment effect

J Permute randomized treatments in the
overall sample,

1 Keep the minimum p-value for the treatment
effect among the final subgroups and derive
the distribution under H,,

) Adjust the observed p-values for final
Inference such that:

P =% Xj=1 1(a’ < pi)



Results

Use SIDEScreen adaptive with L=M=2
and minimum subgroup size=60 to
Investigate the treatment effect on OS

and ORR
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Results

» Results of subgroup analysis

OS

ORR

Cox: type 1 error = 0.106

S1 (n=370): CEA < 220.4
HR=0.524 p=0.0012

S2 (n=352): nb organs <3
HR=0.505 p=0.0012

S3 (n=306): CEA<220.4 & nb organs<3
HR=0.416 p<0.0001

S4 (n=286): nb organs<3 & CEA<139.3
HR=0.403 p<0.0001

No subgroups identified




Results

» Results of subgroup analysis
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J The treatment effect is maximum in 65% of
patients with moderate status benefit the most
from Test (S4: HR=0.403 p<0.0001) ...

... but patients with more aggressive cancer
also benefit from the treatment
(complementary of S4. HR= 0.595 p=0.234).

» Treatment effect Is homogeneous



Discussion

» Subgroup analysis In confirmatory
clinical trials

» Subgroup analysis could be planned
systematically to demonstrate the homogeneity
of treatment effect across patients’ categories.

» For a new claim, the results of retrospective

subgroup analysis are regarded as hypothesis
generating...

v Exception for orphan drug ?
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Abstract

Data-driven subgroup analysis plays an important rele in clinical trizls. This paper focuses on practical considerations in
post-hoc subgroup investigations in the context of confirmatory clinical trizls. The analysis is aimed at assessing the hetero-
peneity of reatment effects across the trial population and ide ntifying patient subgroups with enhanced treatment benefit.
The subgroups are defined using baszline patient characteristics, including demographic and clinical factors. Moch progress
has been made in the development of reliable statistical methods for subgroup investigation, incloding methods based on
global models and recursive partitioning. The paper provides a eview of principled approaches to datz-driven subgroup
identification and illustrates subgroup analysis strategies using a family of recursive partitioning methods known as the
SIDES (subgroup identification based on differential effect search) methods. These methods are applied to a Phase 1 trial
in patienis with metastatic colorectzl cancer. The paper discusses key considerations in subgroup exploration, including
the role of covariate adjustment, subproup anabysis at early decision points and inerpretation of subgroup search results in
trizls with a positive overalleffect.

Keywords Confirmatory clinical frials - Data-driven subgrowp analysis - Recursive partitioning method - Interim anzlysis -

Covariate adjustment - Multiplicity adjustments

Introduction

Datz-driven subgroup identification plzy s an importzant ke
in all Phase I clinical trials. To define the goals of data-
driven or post-hoc assessments of patient subgroups. it is
instructive to compare those to the goals of confirmatory
subgroup analysis. Confirmatory subgroup analysis focuses
on a small szt of prospectively specified subsets of a trial’s
population. These subseis are most often defined using key
demographic variables such as ape and gender as well as
important clinical varishles such s basaline disesse severity.
These pre-defined subgroup analyses help characterize the
homogeneity of treatment e ffects across the patient popula-
tion of interest and support the conclusion of broad consist-
ency with the overall trial result. By contrast, data-driven
subgroup identification deals with open-ended subgroup
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searches aimed at identifying subsets with desirable char-
acteristics such as an enhanced e fficacy profile or improved
benefit-risk profile.

The development of tailored therapies and personalized
medicine rlizs heavily on methods for subgroup discovery
hased on & variety of haseline patient characieristics, maost
importantly biomarkers. Post-hoc subgroup assessments
have been snccessfully applied to multiple confirmataory tri-
als to discover new itreatments or define the most m levant
patient population for an existing meatment [1]. Because of
this. the general topic of subzroup exploration has atracted
much attention in the lieratore as well as regulatory guid-
ance documents. For a peneral overview of statistical con-
siderations in exploratory subgroup analysis, see Alosh
et al. [2] and Ondra et al. [3]. Numerows statistical methods
developed to support exploratery subgroup assessments are
reviewed in Lipkovich et al_ [4, 5]. In addition, posé-hoc
subgroup analysis strategies were discussed in recently pub-
lished regulatory guidelines such as the guideline on the
imestigation of subgroups in confirmatory clinical trials [&]
published by the European Madicines A gency.

It is important to note that exploratory subgroup anaty-
515 15 often thought to be inferior to confirmatory subgroup
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