Recent Advances In Joint Models For Cancer And The New Statistical Challenge Of Immunotherapy Clinical Studies # Statistical Issues And Challenges With Immunotherapies: Introduction (i.e. the Perspective of Clinical Oncologists) #### **Emilio Bria** U.O.C. Oncologia Medica, U.O.S. Neoplasie Toraco-Polmonari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma emilio.bria@unicatt.it #### **Disclosures** - Advisory Boards / Honoraria / Speakers' fee / Consultant for: - MSD, Astra-Zeneca, Celgene, Pfizer, Helsinn, Eli-Lilly, BMS, Novartis, Roche - Research Support / Grants from: - A.I.R.C. (Associazione Italiana Ricerca sul Cancro) - I.A.S.L.C. (International Association for the Study of Lung Cancer) - L.I.L.T. (Lega Italiana per la Lotta contro i Tumori) - Fondazione Cariverona - Astra-Zeneca - Roche - Open Innovation #### **Presentation Outline** - Impact of Immunotherapy (IO) in Medical Oncology - Patients' Selection and Predictive Factors for IO - Treatment End-points for IO - Evidences for Real-World beyond Clinical Trials ### **Presentation Outline** - Impact of Immunotherapy (IO) in Medical Oncology - Patients' Selection and Predictive Factors for IO - Treatment End-points for IO - Evidences for Real-World beyond Clinical Trials ## Lung Cancer Prognosis in last century (Stage III-IV) - Stage IV Non-'something-else-disease' (NSCLC) - Chemo Doublets reaching a 'plateu' - If fit, 100% of patients received chemotherapy - ORR ranging from 15 to 30% 2-trs OS <10%; 4-yrs OS <5% - Stage III (Locally Advanced) - IPD Meta-Analysis [N=1,205] - 25% Grade 3-4 AEs - ORR ranging from 15 to 45% ## Advanced NSCLC in >2016: 'Operative' Classification according to Molecular Biology ## ONCOGENE Addiction ['Stupid' Disease] **Single** Dominant Driver Small Mutational Load (**LOW** Tumor Mutation Burden) Targeted TKIs COULD work Immunotherapy MAY NOT Resistance, late, same/other pathway Traditional Intermediate End-points MAY work as surrogate Adapted from G. Sledge, ASCO 2011 ## Advanced NSCLC in >2016: 'Operative' Classification according to Molecular Biology NON-ONCOGENE Addiction ['Smart' Disease] **Multiple** Drivers & Passengers Large Mutational load (<u>HIGH</u> Tumor Mutation Burden) (Un)Targeted TKIs are NOT effective Immunotherapy MAY effective Resistance common, early Traditional Intermediate End-points does NOT correlate with efficacy Barlesi F et al, Lancet 2016 ## The Evolving View of Lung NSCLC ### The Immune System: an 'Ideal' anti-cancer Weapon #### Why I-O May Work - Diverse Attack - T-Cells, antibodies, NKs, etc.... - Precise Targeting - Can distinguish minute chemical alterations - Recall - After effective priming immunity can last for a lifetime #### Hurdles - The wall of cancer's defence againts immune attack: - Regulatory immune cells - Suppressive cytokines - Immune checkpoint #### FDA approvals for Immune Checkpoint (IC) Inhibitors | | AGENT | TARGET | |--|----------------|--------| | | lpilimumab | CTLA-4 | | | Tremelimumab | CTLA-4 | | | Nivolumab* | PD-1 | | | Pembrolizumab* | PD-1 | | | Atezolizumab | PD-L1 | | | Durvalumab | PD-L1 | | | Avelumab | PD-L1 | ### **NSCLC: Treatment Choices are Driven by Biomarkers** **Suggested Median Time-to-report by Guidelines: <3-4 wks** 'Real-World' Median Time from diagnosis to 1-line therapy: 30-34 days* #### Head-to-Head Pembrolizumab Better than Chemo (PD-L1 ≥50%) 1934 Screened Patients, 500 (30%) PD-L1 TPS ≥50%, 61.5% Men, 18.5% Squamous, 90.5% C/F Smokers #### Head-to-Head Pembrolizumab Better than Chemo (PD-L1 ≥50%) #### Statistical Issues And Challenges With Immunotherapies ## Chemotherapy Enhances Anti-Cancer Immune Response: Rational Partner for Immunotherapy Therapeutic Increasing T-cell penetrance in the tumor Eliminating immunosuppressive cells: T-regulatory cells Enhancing maturation and activation of dendritic cells toward antigen presentation Cancer-antiger Antigen immunogenicity Reversise Foods in TNF-d Reversise Inflammasome pathway 1.25(0H) D.3 TNF-d ROS ATG16 Necoantigens Viral antigens Negative effect Negative effect Negative effect Improving recognition of tumor antigens by T-cell Enhancing effector T-cell function Negative effect Positive effect Negative or positive effect Inducing immunogenic cell death Eliminating immunosuppressive cells: T-regs, myeloid-derived suppressor cells, M2 macrophages Pembro + Chemo Better than Chemo (regardless of PD-L1) ## **NSCLC: Treatment Choices are Driven by Biomarkers** Suggested Median Time-to-report by Guidelines: <3-4 wks 'Real-World' Median Time from diagnosis to 1-line therapy: 30-34 days* #### Pembro + Chemo Better than Chemo (regardless of Histology) #### KN 189 [Non-Squamous] #### KN 407 [Squamous] Censoring rate: 38% of pts with OS event Censoring rate: <u>59%</u> of pts with PFS event #### Pembro + Chemo Better than Chemo (regardless of Histology & PD-L1) 73.0% 48.1% Median (95% CI) 10.0 mo (7.5-NE) Median (95% CI) NR (11.3 mo-NE) NR (7.4 mo-NE) NR (NE-NE) KN 189 [Non- Squamous] **KN 407** [Squamous] #### RT induce Immunogenic Tumor Death and PD-L1 expression - RT DNA and membrane damage activates transcription factors and signalling pathways - That modulates the immunophenotype and immunogenicity of tumour cells - RT induced Damage-associated molecularpatterns (DAMPs mediate robust immunomodulation and de facto underlie the immunogenicity of cancer cell death - Chemothereputics results in variable level of DAMPs with consequent activation of a therapeutically relevant anticancer immune response - RT initiates production of IFN/STING - Activates Pro-Death Signaling in tumor cells - Induced PD-L1 expression - Initiates realeas of tumor antigens - Generates Chemotactic Signals recruiting Myeloid cell polulations #### **Durvalumab after Concurrent CT-RT improves Prognosis** Regulatory Approval is Pending (PD-L1>1%) Antonia S et al, WCLC 2018, NEJM 2018 #### IO: Unexpected Activity in Neoadjuvant Treatment of NSCLC ## **Presentation Outline** - Impact of Immunotherapy (IO) in Medical Oncology - Patients' Selection and Predictive Factors for IO - Treatment End-points for IO - Evidences for Real-World beyond Clinical Trials ## **Challenges to address in IO Clinical Trials** #### Efficacy 'Plateaus' of Immunotherapy: Advanced Melanoma | | Death Rate | |---------------|------------| | @1 <i>y</i> r | 50% | | @3yrs | 80% | - 20% Of Patients overcome 3 yrs, no (very few) additional deaths in 10 years! - Are we dealing with CURED patients? A treatment selection factor is (clearly) required! ## **Biomarkers for Immunotherapy** #### **Current (and Validated) Option for Clinical Practice:** PD-L1 (IHC) on Tumor Tissue #### **Tumour microenvironment** #### Cell-mediated immune system T cells, dendritic cells, plasma cells, macrophages, eosinophils, natural killer cells, myeloid cells #### Serum/circulating factors - Cytokines (e.g. IFNγ) - Lactate dehydrogenase (LDH) - Absolute/relative cell counts #### **Unmeet Medical Need:** Validated Biomarkers in <u>Tissue</u> and <u>Blood</u> ## Potential Utility of Liquid Biopsy in Immunotherapy: - Diagnostic - Prognostic - Predictive of Response - Monitoring - Mechanisms if Resistance #### **Current tools:** - Calculation of circulating TMB - Detection of bPDL1 - Alellic Fraction Variation Dynamic #### Pts Unselected for PD-L1: Second Line Nivolumab #### Statistical Issues And Challenges With Immunotherapies #### OAK [Phase III]: Atezolizumab vs. Docetaxel A treatment selection factor is (clearly) required! Rittmeyer A et al, Lancet 2017 #### PD-L1 Positive Pts: Second Line PEMBRO [TPS ≥1 & 50%] Docetaxel 100 90 8 0 20 10 ## Events, Median OS, HR (95% CI) Pembrolizumab 290 199 (69) 16.9 (12.3–21.4) 0.53 (0.42–0.66) 8.2 (6.4-9.8) 127 (84) 152 **PD-L1 TPS ≥50%** P<0.00001 ## TMB as Biomarker in Lung Cancer: 'Evolutionary Road' #### TMB as a Biomarker for I-O Therapies: LUNG CANCER #### Neoantigen Intratumor Heterogeneity (ITH) & Clonal Neoantigens ## Tumor Mutational Burden (TMB) & Antitumor Immunity Sensitivity to PD-1 blockade enhanced in tumors enriched for clonal neoantigens. HR = 0.29 (0.12 - 0.69) ## TMB according to Oncogene- Addiction ## TMB as a Predictive Biomarker for I-O Therapies Correlation between Tumor Mutational **Burden and Objective Response Rate** with Anti-PD-1 or Anti-PDL1 Therapy in 27 **Tumor Types.** #### **Tumor Mutational Burden (TMB) According to Disease** (Non-oncogene-addicted) NSCLC has High Somatic mutation frequencies (high TMB) Somatic mutation frequencies observed in exomes from 3,083 tumour/normal pairs. Effect of TMB on OS after ICI treatment [1,662 patients] Lawrence M et al, Nature 2013 ### TMB IS predictor for PFS benefit of I-O vs. Chemo CM 026: NIVO vs. Chemo TMB by WGS [21,522 genes] CM 227: NIVO + IPI vs. Chemo TMB by NGS [324 genes] ## TMB IS NOT predictor for OS benefit of I-O vs. Chemo CM 026: NIVO vs. Chemo TMB by WGS [21,522 genes] CM 227: NIVO + IPI vs. Chemo TMB by NGS [324 genes] Low Medium TMB 312 pts (57.6%) NB: data derived from press release on BMS website and cumulated according to a Random Effect Model [Heterogeneity p=0.95] #### bTMB (Blood/Tissue) as a predictor of benefit of Atezolizumab #### bTMB (Blood/Tissue) as a predictor of benefit of Atezolizumab #### **Progression Free Survival (PFS)** #### **Overall Survival (OS)** • The higher the value, the higher the benefit......which cut-off? # TMB is independent from PD-L1 (over)espression High TMB dos not overlap with PD-L1 overexpression Categorical PD-L1 (0-3) IHC Staining Continuous PD-L1 (%) IHC Staining # Feasibility of TMB (tissue/blood) & Positivity Rate | | POPLAR | OAK | B-F1RST | | |-------------------|-------------|-------------|-----------|--| | Samples | 273 | 850 | 152 | | | Evaluable | 211 (77.2%) | 642 (75.5%) | 119 (78%) | | | Positivity (bTMB) | 30% | 27% | 18% | | ### B-F1RST: Prospective Evaluation of bTMB as Biomarker ## **bFAST: Randomized Prospective Validation Ongoing** ### Neoadjuvant Nivolumab in Resectable Stage I-IIIA Association between Mutational Burden and Pathological Response to PD-1 Blockade # Correlation between No. Of Sequence Alterations and Percentage Of Residual Tumor # Why we need that? The Cost of Cancer is Soaring - The average cost of cancer drugs today is 4 times the median household income in US - Getting a cancer immunotherapy treatment costs more than a house in many cities in the US, more than putting a few kids through private college. - The average cost of cancer drugs has increased from \$50,000 per patient in the mid-1990s to \$250,000today. - That's four times the median US household annual income. Source: Peter Back, MSKCC, NYC # **Cancer IO Market Analysis By Product** X China cancer immunotherapy market by cancer type 2014 - 2025 (USD Billion) Source: https://www.grandviewresearch.com/industry-analysis/cancer-immunotherapy-market ## **Presentation Outline** - Impact of Immunotherapy (IO) in Medical Oncology - Patients' Selection and Predictive Factors for IO - Treatment End-points for IO - Evidences for Real-World beyond Clinical Trials # **Challenges to address in IO Clinical Trials** ## Pretreated NSCLC: Immunotherapy is the new Benchmark Individual Level Estimation (>3,200 pts), FDA-Driven Analysis No. at risk Control Experimental 1840 1489 911 619 689 432 332 181 26 - Moderate Association between OS at 12 and 9 months and OS HR - No correlation between OS and intermediate end-points (PFS and ORR) - Although 12months-OS has the strongest association it is likely to be not optimal for future trials, which will have: - Immunotherapy as control arm - Biomarker-enrichment strategies - Enrolled patients with longer survival - Benchmark of Control Arm for Future RCTs: - Median OS: 12 months - 1yr OS: 50% - PFS and ORR not primary #### IO: PFS does not correlate with OS | Study | rHR (95% CI) | | | |---|------------------|--|--| | Nivolumab | | | | | Ferris et al,8 2016 (Checkmate 141) | 1.27 (0.89-1.83) | | | | Borghaei et al, ⁹ 2015 (Checkmate 057) | 1.26 (0.97-1.64) | | | | Brahmer et al, 10 2015 (Checkmate 017) | 1.05 (0.71-1.56) | | | | Robert et al, 11 2015 (Checkmate 066) | 1.02 (0.68-1.54) | | | | Motzer et al, ¹² 2015 (Checkmate 025) | 1.21 (0.93-1.56) | | | | Carbone et al, 13 2017 (Checkmate 026) | 1.13 (0.81-1.57) | | | | Overall | 1.18 (1.03-1.34) | | | | Pembrolizumab | | | | | Bellmunt et al, 14 2017 (Keynote 045) | 1.34 (1.00-1.80) | | | | Reck et al, 15 2016 (Keynote 024) | 0.83 (0.51-1.36) | | | | Herbst et al, 16 2016 (Keynote 010) | 1.24 (0.95-1.62) | | | | Langer et al, ¹⁷ 2016 (Keynote 021) | 0.59 (0.23-1.49) | | | | Overall | 1.18 (0.98-1.41) | | | | Overall | 1.18 (1.06-1.31) | | | - No significant correlation between OS and PFS (medians and gains in medians) - Greatet Effects of treatment in OS than PFS. - Traditional Response Evaluation Criteria in Solid Tumors (ORR and PFS) cannot capture the benefit of PD-1 inhibitors in patients with solid tumors. - OS should remain the gold standard. # IO: Which (Best) End-point for Phase II Studies? #### Observed vs Predicted 12-Month Overall Survival (OS) Rate #### 12-mo OS rate predicted by 6-mo PFS rate #### 12-mo OS rate predicted by ORR ## **Expected Survival Modeling according to Drugs' Features** #### Typical survival curves (Kaplan-Meier model) observed in clinical trials ## **Expected Survival Modeling according to Drugs' Features** #### Typical survival curves (Kaplan-Meier model) observed in clinical trials Model [A] Model [B] Model [C] (x) difference in median survival; (y) 12-month difference in survival rate 12 12 12 6 survival (months) survival (months) survival (months) **Early Stop for** YES YES NO **Futility Correlation with** YES NO NO late benefit # IO: 'Intercepting' Lower HR overtime # Pseudoprogression, Hyperprogression, and Deconvolution of the survival curves IOs Methodology for the Development of Innovative Cancer Therapies (MDICT) Task Force Smoragiewicz M et al, Ann Oncol 2018 # Crossing survival curves in clinical trials #### **Keynote 042** # Crossing survival curves in clinical trials Evaluation using RECIST v1.1 # **Evaluation Integrating Pre-treatment Tumour Kinetics** ## Biological Hypotheses for IO-related Hyperprogressive disease #### Statistical Issues And Challenges With Immunotherapies ## **Questions & Recommendation of the MDICT task force** | Recommendations | |--| | A robust hypothesis, with evidence of efficacy and pharmacodynamic effects in pre-clinical studies
Evidence of single agent activity, or compelling pre-clinical data | | Evaluation of pharmacodynamic biomarkers is critical in early phase combination trials and should be incorporated into trial objectives and go/no-go decisions Trial designs: Master protocols (basket, umbrella, and platform designs) can significantly enhance efficiencies in evaluating multiple IO combination Sequencing designs based on a pre-emptive strategy could be considered Efficacy end points should remain response based, with definitions for response, pseudoprogression, and hyperprogression. iRECIST should be used as secondary or exploratory end point Blood based biomarkers should be prospectively evaluated | | Protocols should capture at least one additional tumour measurement before baseline to determine tumour growth kinetics, and consider an early CT scan (at 4 weeks for example) | | Well-conceived master protocols are strongly encouraged Not re-testing a failed combination of in-class agents unless there is a compelling rationale Proposals of IO combinations should also have a landscape analysis to prevent duplication | | | ## Clinically Meaningful Outcome (mCMO) as a Threshold To establish the concept of minimum *clinically meaningful outcome (mCMO)* of treatment in advanced solid tumors, to establish its threshold and evaluate how many superiority trials of new antineoplastic agents pass this threshold. # Clinical Meaningful Benefit as a Target! NEJM ('90s) The 'Two-Fingers' Rule: Clinically Data should be considered Meaningful if 'at least' two fingers separates curves! Camidge R et al, NEJM 2018 The <u>Biomarker-Based Methodology</u> is leading to the Rediscovery of <u>Clinically Relevant Benefits</u> Moore K et al, NEJM 2018 ## ESMO & ASCO are aiming to add Quantity to Quality #### MCBS: Magnitude of Clinical Benefit Score NHB: Net Health Benefit (NHB) ## **Presentation Outline** - Impact of Immunotherapy (IO) in Medical Oncology - Patients' Selection and Predictive Factors for IO - Treatment End-points for IO - Evidences for Real-World beyond Clinical Trials #### What do we assess in clinical trials? #### Activity: ability of the treatment to induce modifications of the disease thanks to which it is assumed that the patient may have a benefit [Phase II] #### • Efficacy: ability of the treatment to induce a clinical benefit in patients who are administered in an experimental context [Phase III] #### Effectiveness: ability of a treatment to be effective in a non-experimental, concrete and coincident with the clinical practice [are Phase IV, 'Real World' Data] Source: www.pinterest.it/excaliburhealth # Targeted Therapy Performance in the 'Real World' 60 50 # [Nivolumab]: Overall Survival [EAP vs. CM 017] #### **Real World Data ITA-EAP [Nivolumab]** #### Overall 65-<75 years ≥75 years population (N = 371)(n = 175)(n = 70)Median OS, mo (5.2, 11.9)(5.6, 10.4)(3.5, 8.1)(6.2, 9.6)1-yr OS = 42% 1-yr OS = 39% 60 . 1-yr OS = 38% Aged <65 years (n = 126)</p> — Aged 65–<75 years (n = 175)</p> — Aged ≥75 years (n = 70) — Overall population (N = 371) 15 Time (months) #### EAP (Overall & Elderly) vs. CM017 # RWD: NON-Sq. ITA & FRA-EAP [Nivolumab] | | <i>KRAS</i> m
(n = 206) | <i>EGFR</i> m
(n = 102) | Never
smokers
(N = 305) | Never
smokers
<i>EGFRm</i>
(N = 51) | All
patients
(N = 1588) | |----------------------------------|----------------------------|----------------------------|-------------------------------|--|-------------------------------| | ORR (%) | 20 | 9 | 9 | 2 | 18 | | DCR (%) | 47 | 30 | 42 | 22 | 44 | | Median OS,
months
(95% CI) | 11.2
(9.3, 13.1) | 8.1
(2.1, 14.1) | 10.4
(8.6, 12.2) | 5.6
(3.3, 7.9) | 11.3
(10.2,
12.4) | Similar & Consistent Data with Registration Trials Overall ### FDA Analysis: IO as a new Standard for Elderly NSCLC Pts #### **CONCLUSIONS - 1** - Immunotherapy has significantly revolutioned treatment opportunity (particularly) for (the majority) of (non-oncogene addicted) lung cancer patients - Head-to-head comparisons have 'displaced' 2nd line chemo - Head-to-head comparisons have 'displaced' 1st line chemo (in pts with PD-L1>50%) - Almost all pts (regardless of PD-L1) will receive the combination of chemotherapy and Immunotherapy - Nevertheless, long-term survival is expected for few patients, thus the maximization of the benefit is pursued by investigating new potential biomarkers for clinical practice - Tumor Mutational Burden has conflicting results, prospective predictive validation is ongoing #### **CONCLUSIONS - 2** - Traditional end-points are becoming useless (ex. ORR for Phase IIs, or PFS for Phase IIIs), and new models (for potential surrogates and intermediate end-points) are currently under investigation for improving the best way to intercept the benefit of IO - Deriving the benefit of IO in clinical trials to clinical practice in the 'Real World' represents a challenge to date, although expanded-access data with IO do not significantly appear to differ from RCTs data - In order to rapidly continue to impact upon patients' prognosis: - Innovative Trials for Precision Medicine are needed - Partneship between Pharma/Acamedia/Government is CRUCIAL! #### **Presentation of The Antigen** #### **Presentation of Adamo** The Cystein Chapel The Sistina's Chapel