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Background

Biomarkers are often collected repeatedly over time, in parallel
to the time to an event of interest. Some examples from the
clinical literature include:

I CD4 cell counts in patients with HIV, and the time to
progression of AIDS

I Prostate specific antigen and risk of prostate cancer
recurrence

I Serum bilirubin and primary biliary cirrhosis of the liver

I Abdominal aortic aneurysm diameter and time to
aneurysm rupture
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Research questions

I How does the trajectory of the biomarker over time
impact the risk of the clinical event?

I If patients with higher biomarker levels are more likely to
die, will this affect our estimates of the trajectory of the
biomarker?

I Can we predict who will have the clinical event in the
future from repeated measurements of the biomarker?
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Background

Such biomarkers have inherent features which must be taken
into account in any analysis

I These biomarkers are often measured with error

I Measurements taken on the same individual are generally
correlated

I Measured intermittently throughout follow-up

I The value of the biomarker may be related to prognosis
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Survival analysis with a time-varying biomarker

I We could consider fitting a survival model with a
time-varying covariate (TVC)

hi(t) = h0(t) exp
[
φTvi + αyi(t)

]
where yi(t) is the observed biomarker value for the i th

patient at time t, vi are baseline covariates, h0(t) is a
baseline hazard function

I But, we assume the value of the biomarker doesn’t
change until a new measurement is taken.

I We are ignoring measurement error in the biomarker
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Survival analysis with a time-varying biomarker
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Two-stage models

I In a survival analysis with a time-varying covariate, we are
assuming that the covariate is observed error-free, and
only changes value at observation points.

I If we model the biomarker using a linear mixed effects
model, we are creating a model for the outcome at any
time-point t, and furthermore, we were attempting to
remove the measurement error.

I Instead of using the observed biomarker values, we can fit
a linear mixed effects model, and obtain subject-specific
predictions of the true, unobserved biomarker values, at
the observation times and use these instead.

Introduction to Joint Modelling 24th January 2019 9 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Two-stage models

I In a survival analysis with a time-varying covariate, we are
assuming that the covariate is observed error-free, and
only changes value at observation points.

I If we model the biomarker using a linear mixed effects
model, we are creating a model for the outcome at any
time-point t, and furthermore, we were attempting to
remove the measurement error.

I Instead of using the observed biomarker values, we can fit
a linear mixed effects model, and obtain subject-specific
predictions of the true, unobserved biomarker values, at
the observation times and use these instead.

Introduction to Joint Modelling 24th January 2019 9 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Two-stage models

I In a survival analysis with a time-varying covariate, we are
assuming that the covariate is observed error-free, and
only changes value at observation points.

I If we model the biomarker using a linear mixed effects
model, we are creating a model for the outcome at any
time-point t, and furthermore, we were attempting to
remove the measurement error.

I Instead of using the observed biomarker values, we can fit
a linear mixed effects model, and obtain subject-specific
predictions of the true, unobserved biomarker values, at
the observation times and use these instead.

Introduction to Joint Modelling 24th January 2019 9 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Two-stage models

Mathematically,

yi(t) = mi(t) + ei(t), ei(t) ∼ N(0, σ2)

where
mi(t) = Xi

T (t)β + Zi
T (t)bi

We then obtain our subject-specific predictions, m̂i(t), and use
these as our time-varying covariate

hi(t) = h0(t) exp
[
φTvi + αm̂i(t)

]

Introduction to Joint Modelling 24th January 2019 10 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Two-stage models

Mathematically,

yi(t) = mi(t) + ei(t), ei(t) ∼ N(0, σ2)

where
mi(t) = Xi

T (t)β + Zi
T (t)bi

We then obtain our subject-specific predictions, m̂i(t), and use
these as our time-varying covariate

hi(t) = h0(t) exp
[
φTvi + αm̂i(t)

]

Introduction to Joint Modelling 24th January 2019 10 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

However, there are still issues with the two-stage approach

I The uncertainty in our estimates from the first stage are
not carried through to the second stage (Sweeting and
Thompson, 2011). This means our estimates of
association are too precise.

I In terms of how the survival model is estimated, we’re still
assuming the values do not change between observations

However,

I It has been shown to greatly reduce bias compared to the
TVC approach

I It allows us to fit complex models very quickly
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Joint modelling of longitudinal and survival data

I Arose primarily in the field of AIDS, relating CD4
trajectories to progression to AIDS in HIV positive
patients (Faucett and Thomas, 1996)

I Further developed in cancer, particularly modelling PSA
levels and their association with prostate cancer
recurrence (Proust-Lima and Taylor, 2009)

I Think of it as two component models:
I Longitudinal part - linear mixed effects model (mixed)
I Survival part - proportional hazards model (streg)
I The component parts then share some parameter -

dependence through shared random effects (Wulfsohn
and Tsiatis, 1997; Henderson et al., 2000; Rizopoulos,
2012)

Introduction to Joint Modelling 24th January 2019 13 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Joint modelling of longitudinal and survival data

Longitudinal submodel

Assume we observe continuous longitudinal marker:

yi(t) = mi(t) + ei(t), ei(t) ∼ N(0, σ2)

where

mi(t) = Xi
T (t)β + Zi

T (t)bi , bi ∼ N(0,Σ)

We call mi(t) the trajectory function, i.e. the true unobserved
value of the biomarker for the i th patient at time t.
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The basic framework

Survival submodel

Define Mi(t) = {mi(s), 0 ≤ s ≤ t}, to be the true unobserved
longitudinal profile up to time t. We assume a proportional
hazards survival submodel

h(t|Mi(t), vi ) = h0(t) exp
[
φTvi + αmi(t)

]
where h0(t) is the baseline hazard function, and vi a set of
baseline time-independent covariates with associated vector of
log hazard ratios, φ.

Introduction to Joint Modelling 24th January 2019 15 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

The basic framework

Survival submodel

Define Mi(t) = {mi(s), 0 ≤ s ≤ t}, to be the true unobserved
longitudinal profile up to time t. We assume a proportional
hazards survival submodel

h(t|Mi(t), vi ) = h0(t) exp
[
φTvi + αmi(t)

]
where h0(t) is the baseline hazard function, and vi a set of
baseline time-independent covariates with associated vector of
log hazard ratios, φ.

Introduction to Joint Modelling 24th January 2019 15 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Linking the component models
Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t|Mi(t), vi ) = h0(t) exp
[
φTvi + αmi(t)

]
I αmi(t) is termed the current value parameterisation

I αm′i(t) = αdmi (t)
dt

relates the hazard to the rate of change
of the biomarker

I α1mi(t) + α2m
′
i(t) - both current value and rate of

change

I α(β0 + b0i) - the subject-specific intercept

I α>W i(t|bi ;β) in general any (multivariate) function of
the random coefficients
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N∏
i=1

[∫ ∞
−∞

(
ni∏
j=1

p(yi(tij)|bi , θ)

)
p(bi |θ)p(Ti , di |bi , θ) dbi

]
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[∫ ∞
−∞

(
ni∏
j=1

p(yi(tij)|bi , θ)

)
p(bi |θ)p(Ti , di |bi , θ) dbi

]

where we have our continuous longitudinal outcome,

p(yi(tij)|bi , θ) = (2πσ2
e )−1/2 exp

{
− [yi(tij)−mi(tij)]2

2σ2
e

}

Introduction to Joint Modelling 24th January 2019 18 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N∏
i=1

[∫ ∞
−∞
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our multivariate normally distributed random effects,

p(bi |θ) = (2π|V |)−q/2 exp

{
−b′iV

−1bi
2

}
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[∫ ∞
−∞

(
ni∏
j=1

p(yi(tij)|bi , θ)

)
p(bi |θ)p(Ti , di |bi , θ) dbi

]

and our survival outcome,

p(Ti , di |bi , θ) = [h0(Ti) exp(αmi(t) + φvi)]di

× exp

{
−
∫ Ti

0

h0(u) exp(αmi(u) + φvi)du

}
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× exp
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Gauss-Hermite quadrature needed to approximate analytically
intractable integrals (Pinheiro and Bates, 1995)

Introduction to Joint Modelling 24th January 2019 18 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Outline

Introduction

Joint modelling

Likelihood

Example

Estimating treatment effects

Prediction

Summary

Introduction to Joint Modelling 24th January 2019 19 / 39



Introduction Joint modelling Likelihood Example Estimating treatment effects Prediction Summary References

Example: Primary biliary cirrhosis

I 312 patients with primary biliary cirrhosis

I Cirrhosis is a slowly progressing disease in which healthy
liver tissue is replaced with scar tissue, eventually
preventing the liver from functioning properly

I 1945 repeated measures of serum bilirubin, a measure of
liver function

I Treated with D-penicillamine or a placebo

I Outcome of all-cause death, where 140 (44.8%) patients
died

Research question: How does serum bilirubin change over
time, and are those changes associated with survival?
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Data structure (Stata)

. use http://fmwww.bc.edu/repec/bocode/s/stjm_pbc_example_data, clear

. stset stop, enter(start) failure(event=1) id(id)

. list id logb trt start stop event if id==4, table noobs sepby(id)

id logb trt start stop event

4 .5877866 D-penicil 0 .51473 0
4 .4700036 D-penicil .51473 1.018508 0
4 .5306283 D-penicil 1.018508 1.995948 0
4 1.163151 D-penicil 1.995948 3.433359 0
4 1.308333 D-penicil 3.433359 4.002848 0
4 1.386294 D-penicil 4.002848 4.993977 0
4 1.667707 D-penicil 4.993977 5.270507 1

Lots of software now available to fit joint models
I stjm in Stata (Crowther et al., 2013)
I JM and JMbayes in R (Rizopoulos, 2012)
I joineR in R

Introduction to Joint Modelling 24th January 2019 21 / 39
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Exploratory trajectory plots
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Exploratory trajectory plots
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Stata code for fitting TVC, two-stage and joint model

I Time-varying covariate

. streg logb trt, distribution(weibull) nohr

I Two-stage

. mixed logb time || id: time, covariance(unstructured)

. predict fitvals, fitted

. streg fitvals trt, distribution(weibull) nohr

I Joint model

. stjm logb , panel(id) survmodel(weibull) rfp(1) survcov(trt)
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JMbayes code for joint model in R

> library(JMbayes)

# linear mixed model fit (random intercepts + random slopes)
> fitLME <- lme(log(serBilir) ~ year, random = ~ year | id, data = pbc2)

# survival Cox-PH fit
> fitSURV.cox <- coxph(Surv(years, status2) ~ drug, data = pbc2.id,
x = TRUE)

# joint model
> fitJOINTBayes <- jointModelBayes(fitLME, fitSURV.cox, timeVar="year",
param="td-value")
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Model results
Comparing approaches,

I Per unit increase in log Bilirubin

Model log HR SE 95% CI

TVC 1.308 0.085 1.142 1.475
2-stage 1.221 0.082 1.060 1.382

JM (stjm) 1.241 0.093 1.058 1.423
JM (JMbayes) 1.269 0.097 1.087 1.463

I Treatment effect (D-penicillamine vs. placebo)

Model log HR SE 95% CI

TVC -0.021 0.170 -0.355 0.313
2-stage 0.029 0.170 -0.304 0.363

JM (stjm) 0.044 0.179 -0.307 0.395
JM (JMbayes) 0.049 0.185 -0.312 0.409
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Comparing association structures for joint model

Model AIC BIC

Current 3858.407 3914.137
Slope 3900.301 3956.032
Both 3850.974 3912.277
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Estimating treatment effects

Suppose we have a treatment, ui , that effects both the
longitudinal outcome, and survival outcome. Let’s assume,

yi(t) = mi(t) + ei(t)

= (β0 + b0i) + (β1 + b1i)t + βui + ei(t)

and
h(t) = h0(t) exp [φui + αmi(t)]

Because the models are linked, we have direct and indirect
treatment effects on survival

Introduction to Joint Modelling 24th January 2019 30 / 39
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yi(t) = (β0 + b0i) + (β1 + b1i)t + βui + ei(t)

and
h(t) = h0(t) exp [φui + αmi(t)]

We have,
I β: the direct effect of treatment on the longitudinal

outcome
I φ: the direct effect of treatment on survival
I αβ + φ: the overall treatment effect on survival
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Dynamic prediction from a joint model

I Conditional on a set of biomarker measurements

Yi(t) = {yi(s), 0 ≤ s < t}

we are interested in predicting survival

P{T ∗i ≥ u|T ∗i > t,Yi(t),Dn}

where, u > t, and Dn is our sample which the joint model
was fitted

I Further info in (Rizopoulos, 2011)
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Conditional survival predictions
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3-year conditional survival predictions
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Summary

I Joint modelling provides us with a method of linking a longitudinal
outcome, measured with error, to the time to an event of interest

I It has been shown to reduce bias and maximise efficiency compared
to naive approaches

I Failing to account for the longitudinal process causes bias in
covariate effects on survival when there is a true association
between outcomes

I Ignoring the informative drop-out process leads to bias in estimates
of the longitudinal trajectory

I Opportunities to utilise the joint model framework in prognostic

modelling are substantial

I Applications so far have been to datasets < 2000
patients
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Extensions

I Multiple longitudinal outcomes, of different type;

I Choice of the survival submodel;

I Delayed entry;

I Competing risks;

I Recurrent and terminal events;

I Complex correlation structures for LME models;

I Many more...

See merlin package in Stata and R (Crowther, 2018) for
general mixed effects regression of multivariate outcomes
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