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Background

Biomarkers are often collected repeatedly over time, in parallel
to the time to an event of interest. Some examples from the
clinical literature include:

» CD4 cell counts in patients with HIV, and the time to
progression of AIDS

» Prostate specific antigen and risk of prostate cancer
recurrence

» Serum bilirubin and primary biliary cirrhosis of the liver

» Abdominal aortic aneurysm diameter and time to
aneurysm rupture
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Introduction

Research questions

» How does the trajectory of the biomarker over time
impact the risk of the clinical event?

» If patients with higher biomarker levels are more likely to
die, will this affect our estimates of the trajectory of the
biomarker?

» Can we predict who will have the clinical event in the
future from repeated measurements of the biomarker?
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Background

Such biomarkers have inherent features which must be taken
into account in any analysis

» These biomarkers are often measured with error

» Measurements taken on the same individual are generally
correlated

» Measured intermittently throughout follow-up

» The value of the biomarker may be related to prognosis
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Introduction

Survival analysis with a time-varying biomarker

» We could consider fitting a survival model with a
time-varying covariate (TVC)

hi(t) = ho(t) exp [@ " vi + ayi(t)]

where y;(t) is the observed biomarker value for the it
patient at time t, v; are baseline covariates, ho(t) is a
baseline hazard function

» But, we assume the value of the biomarker doesn’t
change until a new measurement is taken.

» We are ignoring measurement error in the biomarker
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Introduction

Survival analysis with a time-varying biomarker
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Introduction

Two-stage models

» In a survival analysis with a time-varying covariate, we are
assuming that the covariate is observed error-free, and
only changes value at observation points.
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assuming that the covariate is observed error-free, and
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» |f we model the biomarker using a linear mixed effects
model, we are creating a model for the outcome at any
time-point t, and furthermore, we were attempting to
remove the measurement error.
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Introduction

Two-stage models

» In a survival analysis with a time-varying covariate, we are
assuming that the covariate is observed error-free, and
only changes value at observation points.

» |f we model the biomarker using a linear mixed effects
model, we are creating a model for the outcome at any
time-point t, and furthermore, we were attempting to
remove the measurement error.

» Instead of using the observed biomarker values, we can fit
a linear mixed effects model, and obtain subject-specific
predictions of the true, unobserved biomarker values, at
the observation times and use these instead.
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Introduction

Two-stage models

Mathematically,
yi(t) = mi(t) +e(t),  elt) ~ N(0,0?)

where
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Introduction

Two-stage models

Mathematically,
vi(t) = mi(t) + e(t),  el(t) ~N(0,0%)

where

mi(t) = Xi" ()8 + Z;" (t)b;

We then obtain our subject-specific predictions, m;(t), and use
these as our time-varying covariate

h,‘(t) = ho(t) exp [(bTV,' + Oér;\’l,‘(t)}
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However, there are still issues with the two-stage approach
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Introduction

However, there are still issues with the two-stage approach

» The uncertainty in our estimates from the first stage are
not carried through to the second stage (Sweeting and
Thompson, 2011). This means our estimates of
association are too precise.

» |n terms of how the survival model is estimated, we're still
assuming the values do not change between observations
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Introduction

However, there are still issues with the two-stage approach

» The uncertainty in our estimates from the first stage are
not carried through to the second stage (Sweeting and
Thompson, 2011). This means our estimates of
association are too precise.

» |n terms of how the survival model is estimated, we're still
assuming the values do not change between observations
However,

» It has been shown to greatly reduce bias compared to the
TVC approach

» It allows us to fit complex models very quickly
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Joint modelling

Joint modelling of longitudinal and survival data

» Arose primarily in the field of AIDS, relating CD4
trajectories to progression to AIDS in HIV positive
patients (Faucett and Thomas, 1996)

» Further developed in cancer, particularly modelling PSA
levels and their association with prostate cancer
recurrence (Proust-Lima and Taylor, 2009)

» Think of it as two component models:

» Longitudinal part - linear mixed effects model (mixed)

» Survival part - proportional hazards model (streg)

» The component parts then share some parameter -
dependence through shared random effects (Wulfsohn
and Tsiatis, 1997; Henderson et al., 2000; Rizopoulos,
2012)
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Joint modelling

Joint modelling of longitudinal and survival data

Longitudinal submodel

Assume we observe continuous longitudinal marker:
yi(t) = mi(t) + e(t), ei(t) ~ N(0,0?)
where
mi(t) = X;"(t)8 + Zi" (t)b;, b; ~N(0,X)

We call m;(t) the trajectory function, i.e. the true unobserved
value of the biomarker for the i*" patient at time t.
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Joint modelling

The basic framework

Survival submodel

Define M;(t) = {m;(s),0 < s < t}, to be the true unobserved
longitudinal profile up to time t. We assume a proportional
hazards survival submodel

h(t|M;i(t), vi) = ho(t) exp [T vi + ami(t)]

where ho(t) is the baseline hazard function, and v; a set of
baseline time-independent covariates with associated vector of
log hazard ratios, ¢.
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Joint modelling

Linking the component models

Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t|M;(t), vi) = ho(t) exp [T vi + ami(t)]

» am;(t) is termed the current value parameterisation
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Joint modelling

Linking the component models

Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t|M;(t), vi) = ho(t) exp [T vi + am(t)]

» am;(t) is termed the current value parameterisation
dm(t)

» amj(t) = a=7.~ relates the hazard to the rate of change

of the biomarker
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Joint modelling

Linking the component models

Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t|M;(t), vi) = ho(t) exp [@T vi + armi(t) + coml(t)]

» am;(t) is termed the current value parameterisation

» ami(t) = ozdmd—’t(t) relates the hazard to the rate of change

of the biomarker

» aym;(t) + apm/(t) - both current value and rate of
change
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Joint modelling

Linking the component models

Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t|Mi(t), vi) = ho(t) exp [ngv,- + oo + boj)]

» am;(t) is termed the current value parameterisation
» ami(t) = ozdmd—’t(t) relates the hazard to the rate of change

of the biomarker

v

a;m;(t) + aomi(t) - both current value and rate of
change

v

a(Bo + bo;) - the subject-specific intercept
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Joint modelling

Linking the component models

Our key question here is how are changes in the biomarker
trajectory associated with survival?

h(t[Mi(t), vi) = ho(t) exp [T vi + o' Wi(t|b;; 8)]

» am;(t) is termed the current value parameterisation
» ami(t) = ozdmd—’t(t) relates the hazard to the rate of change

of the biomarker

v

a;m;(t) + aomi(t) - both current value and rate of
change

v

a(Bo + bo;) - the subject-specific intercept
» o' W,(t|b;; B) in general any (multivariate) function of
the random coefficients
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N n;

1 [ | ( p(y,-<t,-,-)|b,~,e>> (b 10)p(Ti b1, ) d

i=1 Jj=
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N

H [/Oo ( | p()’i(tij)|bia9)> p(bi1#)p(Ti. di[b. 6) dbi]

=1 - Jj=

where we have our continuous longitudinal outcome,

2
20¢

p(yi(t)] b1, 0) = (2702) 2 exp {_ Lilty) — mi(t3)] }
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N

H [/Oo ( | p(}’i(tij)|bi»0)> p(bi19)p(Ti. di|b. 6) dbi]

=1 -0 Jj=
our multivariate normally distributed random effects,

A
2

p(b]6) = (2| V]) 2 exp {—
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N [e'¢) nj
H [/ ( P(YI(tij)|bi,9)> p(bi|0)p(T:, d:|br, 0) db,-]

and our survival outcome,

p(T;, di|b;, 0) = [ho( T;) exp(ami(t) + ¢v;)]”

X exp {— /OT’ o (1) exp(ami(u) + ¢v,-)du}
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Joint likelihood (for those interested...)

Our full joint likelihood relies on conditional independence:

N n;

H [/m ( p(}’i(l‘ij)|bi»0)> p(bi1#)p(Ti. di[b. 6) dbi]

and our survival outcome,

p(T;, di|b;, 0) = [ho( T;) exp(ami(t) + ¢v;)]”

X exp {— /OT’ o (1) exp(am;(u) + <;§v,-)du}

Gauss-Hermite quadrature needed to approximate analytically
intractable integrals (Pinheiro and Bates, 1995)
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Example: Primary biliary cirrhosis

» 312 patients with primary biliary cirrhosis

» Cirrhosis is a slowly progressing disease in which healthy
liver tissue is replaced with scar tissue, eventually
preventing the liver from functioning properly

» 1945 repeated measures of serum bilirubin, a measure of
liver function

» Treated with D-penicillamine or a placebo
» Outcome of all-cause death, where 140 (44.8%) patients
died

Research question: How does serum bilirubin change over
time, and are those changes associated with survival?
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Data structure (Stata)

. use http://fmwww.bc.edu/repec/bocode/s/stjm_pbc_example_data, clear
. stset stop, enter(start) failure(event=1) id(id)

. list id logb trt start stop event if id==4, table noobs sepby(id)

id logb trt start stop event

4 .5877866  D-penicil 0 .51473
4 .4700036 D-penicil .51473 1.018508
4 .5306283 D-penicil 1.018508 1.995948
4 1.163151 D-penicil 1.995948  3.433359
4 1.308333 D-penicil 3.433359  4.002848
4 1.386294 D-penicil  4.002848  4.993977
4 1.667707 D-penicil  4.993977  5.270507

= O OO0OO0OO0OOo

Lots of software now available to fit joint models
» stjm in Stata (Crowther et al., 2013)
» JM and JMbayes in R (Rizopoulos, 2012)
» joineR in R
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Exploratory trajectory plots

Censored

Longitudinal response
Longitudinal response

5 5 15
Measurement time Measurement time

stjmgraph logb, panel(id)
(Crowther et al., 2013)
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Exploratory trajectory plots
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Exploratory trajectory plots

Censored Event

< q <+

- ~ |
@ ) i
& I3 s
o o P
T B Fy

i

£ £ -
2 E 7
2 2 P
gc go - -
59 e

oA oA

-15 0 -15 0

-10 -5
Time before censoring

-10 -5
Time before event

stjmgraph logb, panel(id) lowess adjust
(Crowther et al., 2013)

Introduction to Joint Modelling

24" January 2019 24 /39



Stata code for fitting TVC, two-stage and joint model
» Time-varying covariate
. streg logb trt, distribution(weibull) nohr
» Two-stage

. mixed logb time || id: time, covariance(unstructured)
. predict fitvals, fitted

. streg fitvals trt, distribution(weibull) nohr

» Joint model

. stjm logb , panel(id) survmodel(weibull) rfp(1) survcov(trt)
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JMbayes code for joint model in R

> library(JMbayes)

# linear mixed model fit (random intercepts + random slopes)
fitLME <- 1lme(log(serBilir) ~ year, random = ~ year | id, data = pbc2)

v

# survival Cox-PH fit
fitSURV.cox <- coxph(Surv(years, status2) ~ drug, data = pbc2.id,
x = TRUE)

v

# joint model
> fitJOINTBayes <- jointModelBayes(fitLME, fitSURV.cox, timeVar="year",
param="td-value")
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Model results

Comparing approaches,
» Per unit increase in log Bilirubin

Model log HR  SE 95% Cl

TVC 1308 0085 1.142 1.475

2-stage 1221 0.082 1.060 1.382

JM (stjm) 1241 0.093 1.058 1.423
JM (JMbayes) 1269 0.097 1.087 1.463

» Treatment effect (D-penicillamine vs. placebo)

Model log HR  SE 95% ClI

TVC -0.021 0170 -0.355 0.313

2-stage  0.029 0.170 -0.304 0.363

JM (stjm) 0.044 0179 -0.307 0.395
JM (JMbayes) 0.049 0.185 -0.312 0.409
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Comparing association structures for joint model

Model AIC BIC

Current 3858.407 3914.137
Slope 3900.301 3956.032
Both 3850.974 3912.277
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Estimating treatment effects
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Estimating treatment effects

Estimating treatment effects

Suppose we have a treatment, u;, that effects both the
longitudinal outcome, and survival outcome. Let's assume,

y;(t) = m,-(t) + e,-(t)
= (Bo + boi) + (51 + b1i)t + Bu; + €(t)

and
h(t) = ho(t) exp [pu; + am;(t)]
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Estimating treatment effects

Estimating treatment effects

Suppose we have a treatment, u;, that effects both the
longitudinal outcome, and survival outcome. Let's assume,

y;(t) = m,-(t) + e,-(t)
= (Bo + boi) + (51 + b1i)t + Bu; + €(t)

and
h(t) = ho(t) exp [pu; + am;(t)]

Because the models are linked, we have direct and indirect
treatment effects on survival
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Estimating treatment effects

yi(t) = (Bo + boi) + (B1 + b1i)t + Bu; + ei(t)

and
h(t) = ho(t) exp [pu; + am;(t)]
We have,
» [(: the direct effect of treatment on the longitudinal
outcome

» ¢: the direct effect of treatment on survival
» af + ¢: the overall treatment effect on survival
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Estimating treatment effects
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Dynamic prediction from a joint model

» Conditional on a set of biomarker measurements
Vi(t) ={yi(s),0 < s < t}
we are interested in predicting survival
P{T: > u|T; > t,Vi(t), Ds}

where, u > t, and D, is our sample which the joint model
was fitted
» Further info in (Rizopoulos, 2011)
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Conditional survival predictions
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Conditional survival predictions
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Conditional survival predictions
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3-year conditional survival predictions

0
1

o
I
f
b

3-year conditional survival probability

0 2 4 6 8 10
Landmark survival time (years)

Introduction to Joint Modelling 24" January 2019 35 /39



Outline

Summary

Introduction to Joint Modelling 24" January 2019



Summary

Summary

> Joint modelling provides us with a method of linking a longitudinal
outcome, measured with error, to the time to an event of interest
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Summary

> Joint modelling provides us with a method of linking a longitudinal
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to naive approaches

» Failing to account for the longitudinal process causes bias in
covariate effects on survival when there is a true association
between outcomes
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Summary

> Joint modelling provides us with a method of linking a longitudinal
outcome, measured with error, to the time to an event of interest

> It has been shown to reduce bias and maximise efficiency compared
to naive approaches

» Failing to account for the longitudinal process causes bias in
covariate effects on survival when there is a true association
between outcomes

> lIgnoring the informative drop-out process leads to bias in estimates
of the longitudinal trajectory
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Summary

Summary

> Joint modelling provides us with a method of linking a longitudinal
outcome, measured with error, to the time to an event of interest

v

It has been shown to reduce bias and maximise efficiency compared
to naive approaches

v

Failing to account for the longitudinal process causes bias in
covariate effects on survival when there is a true association
between outcomes

v

Ignoring the informative drop-out process leads to bias in estimates
of the longitudinal trajectory

> Opportunities to utilise the joint model framework in prognostic
modelling are substantial

» Applications so far have been to datasets < 2000
patients
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Summary

Extensions

» Multiple longitudinal outcomes, of different type;
» Choice of the survival submodel;

» Delayed entry;

» Competing risks;

» Recurrent and terminal events;

» Complex correlation structures for LME models;
» Many more...

See merlin package in Stata and R (Crowther, 2018) for
general mixed effects regression of multivariate outcomes
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