Joint latent class models for longitudinal & survival data in Cancer research

Cécile Proust-Lima

INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France
Univ. Bordeaux, ISPED, Bordeaux, France
cecile.proust-lima@inserm.fr

Annual workshop of the GSO SMAC Club Univ. Bordeaux, ISPED - January 24-25, 2019

Progression of Cancers

- Progression of cancer studied through:
 - biomarkers (e.g., tumor size, PSA)
 - clinical progression (e.g., recurrence -local, regional, metastatic-, death)
 provide inter-related information that need to be analyzed jointly

- Joint models useful to address different questions:
 - describe the trajectory of the biomarker stopped by the clinical progression (informative dropout)
 - predict the risk of clinical progression using the biomarker information: adjustment of survival analyses individual dynamic prediction and screening optimization
 - explore/understand the association between the two processes

Joint modelling principle

Simultaneous modelling of correlated longitudinal and survival data

Joint modelling approaches

Mixed model (usually linear)

Survival model (usually proportional hazards)

Link with the latent structure:

- random effects from the mixed model (aka shared random effect models)
 - $\,
 ightarrow\,$ quantifies the effect of the biomarker on the risk of event
 - $\,\rightarrow\,\,$ corrects the biomarker trajectory for the informative truncation by the event

Joint modelling approaches (con't)

Mixed model (usually linear)

Survival model (usually proportional hazards)

Link with the latent structure:

- latent class structure (aka joint latent class models)
 - ightarrow describes the processes as made of homogenous subgroups
 - ightarrow more descriptive approach appropriate for *a priori* heterogenous populations

Joint latent class model (JLCM) (Proust-Lima, SMMR 2014)

Shared latent class (c_i) membership:

$$\pi_{ig} = P(c_i = g|X_{pi}) = rac{e^{\xi_{0g} + X_{C_i} ^{ op} \xi_{1g}}}{\sum_{l=1}^G e^{\xi_{0l} + X_{C_l} / top \xi_{1l}}} ext{ with } \xi_{0G} = 0 \& \xi_{1G} = 0$$

Class-specific linear mixed model for the biomarker trajectory:

$$Y_i(t_{ij}) \mid_{c_i = g} = Z_i(t_{ij})^T b_{ig} + X_{Li}(t_{ij})^\top \beta_g + \epsilon_{ij} \text{ with } b_{ig} \sim \mathcal{N}(\mu_g, B_g), \ \epsilon_{ij} \sim \mathcal{N}\left(0, \sigma_\epsilon^2\right)$$

Class-specific proportional hazard model:

$$\lambda(t \mid c_i = g) = \lambda_{0g}(t)e^{X_{Ti}(t)\delta_g}$$

Estimation in the maximum likelihood framework

- Estimation for a fixed number of latent classes G
 - θ_G total vector of parameters
- Individual contribution to the likelihood:
 - conditional independence given the latent classes

$$l_i(\theta_G) = \sum_{g=1}^G \pi_{ig} f_i(Y_i \mid c_i = g; \theta_G) \lambda_i(T_i \mid c_i = g; \theta_G)^{E_i} S_i(T_i \mid c_i = g, \theta_G)$$

with $S_i(t \mid c_i = g, \theta_G)$ the class-specific survival function

- Multimodality
 - convergence toward local maxima
 - solution: grid search from random initial values
- Software:
 - ► Jointlcmm R function within lcmm R package

Selection of the number of classes and posterior classification

- Posterior computations:
 - posterior class-membership probability: $\hat{\pi}_{ig}^{Y,T} = P(c_i = g \mid Y_i, (T_i, E_i), X_i; \hat{\theta}_G)$
 - posterior classification: $\tilde{c}_i^{Y,T} = argmax_g(\hat{\pi}_{ig}^{Y,\check{T}})$
- Number of latent classes to be determined a posteriori:
 - Bayesian Information Criterion (BIC)
 - Discriminative performances of the latent classes (e.g., entropy, mean membership probability)
 - ► Test of conditional independence between *Y* and *T* (Jacqmin-Gadda, Bcs 2010)
 - Model fit
 - Size of the classes
 - Clinical question

Not a problem in Bayesian framework with mixtures of Dirichlet process

- Four patterns of PSA trajectory and risk of any clinical recurrence
 - ▶ N=459 men from the University of Michigan Hospital Cohort
 - after a radiation therapy (EBRT)

- Very close to the observations:
 - high discrimination (mean probability of latent class membership > 92%)
 - better than SREM (-400 points in BIC when dependence on level and slope)

12

(pred)

(pred)

(pred)

(pred)

Illustration in Prostate Cancer (Proust-Lima, Biostat 2009, SMMR 2014)

Interesting framework to provide individualized dynamic predictions

► Example for a man with a recurrence at 3.8 years

x PSA measures

Interesting framework to provide individualized dynamic predictions

Example for a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI:

▲ with joint model (JLCM, 4 classes)

Interesting framework to provide individualized dynamic predictions

Example for a man with a recurrence at 3.8 years

x PSA measures

- ▲ with joint model (JLCM, 4 classes)
- with survival model (no PSA information)

Interesting framework to provide individualized dynamic predictions

Example for a man with a recurrence at 3.8 years

x PSA measures

- ▲ with joint model (JLCM, 4 classes)
- with survival model (no PSA information)

Interesting framework to provide individualized dynamic predictions

Example for a man with a recurrence at 3.8 years

x PSA measures

- ▲ with joint model (JLCM, 4 classes)
- with survival model (no PSA information)

Extensions of joint latent class models

Competing risk setting

- cause-and-class specific model (Proust-Lima, Stat Med 2016)
- ex. first clinical recurrence by type

multistate data

- class-specific intensities of transition (Rouanet, Biometrics 2016)
- ex. whole succession of clinical progressions

Extensions of joint latent class models

- Multiple biomarkers
 - ex. tumor size and PSA
 - ex. blood marker and toxicity
 - ex. several scales of patient reported outcomes

- Competing risk setting
 - cause-and-class specific model (Proust-Lima, Stat Med 2016)
 - ex. first clinical recurrence by type
- multistate data
 - class-specific intensities of transition (Rouanet, Biometrics 2016)
 - ex. whole succession of clinical progressions

Collaboration within French GSO Canceropole

- Observational study in psychology of Health (Institute of Cancer in Montpellier, France)
 - Patients with metastatic colorectal cancer beginning a new cycle of chemotherapy (N=169)
 - Two visual analogue scales of tiredness: Physical tiredness and Psychological tiredness
 - Measures every 2 weeks for 6 months (n=21 deaths during the follow-up)
- Explore the heterogeneity of trajectories of tiredness
 - Joint latent class model for 2 repeated markers & a censored time to event
 - ★ Latent classes structure central
 - Both markers may be of importance
 - ★ Truncation by death probably informative

Application framework

80 90 0 1 2 3 4 5 6 7 months since enrollment

Class-specific quadratic trajectories over time *

Class-specific Weibull risk

Summary of estimated model assuming from 1 to 7 classes

G	p^*	log(L)	BIC	Ε [†]	Frequency of the latent classes (%)						
					1	2	3	4	5	6	7
1	30	-3642.4	7438.6	1.00	100.0						
2	39	-3562.9	7326.0	0.84	42.6	57.4					
3	48	-3532.0	7310.3	0.82	16.6	42.0	41.4				
4	57	-3502.8	7298.1	0.79	15.4	36.7	14.8	33.1			
5	66	-3473.5	7285.6	0.81	13.0	11.2	14.8	39.1	21.9		
6	75	-3460.6	7306.0	0.80	9.5	18.3	17.8	11.8	20.7	21.9	
7	84	-3449.4	7329.7	0.82	13.6	33.1	8.3	11.8	4.7	20.1	8.3

^{*} number of parameters † entropy

Mean posterior probabilities for G=5: 90%, 86%, 87%, 91%, 84%

Predicted trajectories of tiredness and death

What about a unique process of tiredness?

What about a unique process of tiredness?

- Changes in the methodology:
 - Class-specific latent class mixed model on the underlying common factor "tiredness"
 - Specific equation of observation for each type of observed tiredness scale

Non normality of psychological scales (ex. at T=0)

Class-specific linear mixed model

$$Y_{ki}(t_{ij})$$
 $|_{c_i=g} = Z_{ki}(t_{ij})^T b_{kig} + X_{Lki}(t_{ij})^\top \beta_{kg} + \epsilon_{kij}$

Non normality of psychological scales (ex. at T=0)

 Class-specific linear mixed model with a nonlinear link function for each scale k (k = 1, 2):

$$H_k(Y_{ki}(t_{ij}); \eta_k) \mid_{c_i=g} = Z_{ki}(t_{ij})^T b_{kig} + X_{Lki}(t_{ij})^\top \beta_{kg} + \epsilon_{kij}$$

with H approximated by cubic I-splines

Non normality of psychological scales (ex. at T=0)

 Class-specific linear mixed model with a nonlinear link function for each scale k (k = 1, 2):

$$H_k(Y_{ki}(t_{ij}); \eta_k) \mid_{c_i = \mathbf{g}} = Z_{ki}(t_{ij})^T b_{kig} + X_{Lki}(t_{ij})^\top \beta_{kg} + \epsilon_{kij}$$

with H approximated by cubic I-splines

Non normality of psychological scales (ex. at T=0)

 Class-specific linear mixed model with a nonlinear link function for each scale k (k = 1, 2):

$$H_k(Y_{ki}(t_{ij}); \eta_k) \mid_{c_i=g} = Z_{ki}(t_{ij})^T b_{kig} + X_{Lki}(t_{ij})^\top \beta_{kg} + \epsilon_{kij}$$

with *H* approximated by cubic I-splines

 Possible alternatives: class-specific two-part models, class-specific zero-inflated Poisson mixed model (Lévèque, 2018)

Non normality of psychological scales (ex. at T=0)

 Class-specific linear mixed model with a nonlinear link function for each scale k (k = 1, 2):

$$H_k(Y_{ki}(t_{ij}); \eta_k) \mid_{c_i = g} = Z_{ki}(t_{ij})^T b_{kig} + X_{Lki}(t_{ij})^\top \beta_{kg} + \epsilon_{kij}$$

with H approximated by cubic I-splines

- Possible alternatives: class-specific two-part models, class-specific zero-inflated Poisson mixed model (Lévèque, 2018)
- Small number of deaths, other types of dropout

Concluding remarks

- Latent class approach, alternative to shared random effect models
 - not useful to quantify associations
 - relevant to describe trajectories and association with clinical endpoints with less assumptions
 - relevant candidate for individual dynamic predictions
- Same extensions as in SREM (e.g., multivariate Y and T)
- Implemented in R, package 1cmm (Proust-Lima, JSS 2017)
 - multivariate longitudinal version on github only
- To go further with the methodology?
 - evaluation of the fit to expand (e.g., conditional independence assumption, choice of the number of components)
 - numerical aspects to improve
 - dynamic latent classes (or dynamic stages) migt be more in concordance with disease progression

Acknowledgement

- Viviane Philipps: programming and analyses
- Louise Baussard & Florence Cousson-Gélie: tiredness data collection and scientific question
- INCA: grants SHS 2015-2018 FATIGUE-TR & SHS 2010-2014 PREDYC

References

- Review on JLCM: Proust-Lima et al., SMMR 2014
- JLCM with multivariate events: Proust-Lima et al., Stat Med 2016; Rouanet et al., Biometrics 2016
- Evaluation: Jacqmin-Gadda et al., Biometrics 2010
- Individual dynamic predictions: Proust-Lima and Taylor, Biostatistics 2009
- R package: Proust-Lima, Philipps, Liquet, J Stat Software 2017 https://github.com/CecileProust-Lima/lcmm