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Overview

I. Mathematical	models	for	immunotherapy:	current	progress	
and	challenges1
i. Tumor	classification	for	treatment	and	prediction	of	response
ii. Optimal	scheduling	and	dosage	of	treatment
iii. Design	and	identification	of	combination	treatment	regimes
iv. Recommendations	for	further	progress

II. A	mathematical	model	of	combined	CD8	T	cell	costimulation
by	4-1BB	(CD134)	and	OX40	(CD137)	receptors2

1Konstorum	A,	Vella	AT,	Adler	AJ,	Laubenbacher RC	(2017)	Addressing	current	challenges	in	cancer	immunotherapy	with	
mathematical	and	computational	modelling.		J.	R.	Soc.	Interface 14:	20170150.	
2Currently	manuscript	in	preparation,	results	not	(yet!)	published.		Stay	tuned!
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Summary	of	modeling	efforts	in	immunotherapy
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Challenge:	tumor	classification	for	treatment	and	prediction	of	response

• Goal:	to	predict	how	a	patient	with	a	specific	set	of	tumor	characteristics	will	
respond	to	a	given	treatment.

• Mathematical	models	can	be	used	to	predict	effect	of	therapy	that	has	not	yet	been	
tried	in	the	clinic.

1Kirschner,	D	and	Panetta,	JC	(1998)	Modeling	immunotherapy	of	the	tumor	– immune	interaction.		J.	Math	Biol 37:235-252.
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with	initial	conditions

Classic	example:	Panetta-Kirschner (PK)	model1

• Models	dynamics	of	effector	(E)	and	tumor	(T)	cells,	
and	the	cytokine	IL-2	(IL).

• Parameter	of	note:
• antigenecity of	tumor	(c)

• Therapies	represented	by	s1,	s2.
• s1:=	Adoptive	Cellular	Immunotherapy	(ACI),	

injection	of	cultured	immune	cells	with	anti-
tumor	reactivity	or	Tumor	Infiltrating	Lymphocyte	
(TIL)	therapy:	tumor-derived	lymphoyctes
cultured	and	reinjected	into	patient.

• s2:=	external	input	of	IL-2	into	the	system.
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Fig. 4. A two-parameter bifurcation diagram of antigenicity versus ACI (c vs. s

1
).

HB"Hopf Bifurcation; LP"Limit Point; BP"Bifurcation Point. The regions are de-
scribed in the text
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there is a bifurcation that, with the analysis to follow, can be
shown to be a transcritical bifurcation.

In the cases where a tumor can exist the dynamics are again very rich.
Here, the positive steady states are of the form E

i
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i
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i
, I*¸

i
), i ranging

from 1 to 3. These vary with the treatment input s

1
. We examine regions in the

c vs s

1
parameter space to explore how s

1
'0 alters the earlier results. The

Roman numerals (below) correspond to the regions of the bifurcation diagram
in Fig. 4.

A. If s

1
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:
I. There is only one steady-state, E

1
"(E*

1
, π*

1
, 0), and it is a stable

improper node.
II. A stable limit cycle is born. These cycles persist for the entire region,

but as the parameters approach the value of the Hopf Bifurcation, the
amplitude and the period of the limit cycles decreases.

244 D. Kirschner, J. C. Panetta

• Using	linear	stability	analysis,	identify

which	impacts	the	tumor	steady	state.		

• Region	V	has	a	stable	steady	state	of	tumor	
eradication,	and	Region	IV	may	either	tend	
to	tumor	eradication	or	survival	depending	
on	the	initial	conditions.		

• Regions	I-III	do	not	produce	tumor	
eradication.

Therefore,	can	predict	response	to	(and	
potentially	modify)	treatment	with	knowledge	
of	system	parameters.

s1crit =
r2g2µ2

a
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1Kirschner,	D	and	Panetta,	JC	(1998)	Modeling	immunotherapy	of	the	tumor	– immune	interaction.		J.	Math	Biol 37:235-252.

[1]
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Challenge:	tumor	classification	for	treatment	and	prediction	of	response

• More	complex	systems	require	numerical	analysis	(vs.	linear	stability),	and	have	focused	on	the	
concept	of	thresholds	for	predicting	patient	response.		Some	examples:
• Kronik et	al.	(2012)1 modeled	ex	vivo expanded	tumor-specific	T	cell	transfer	for	melanoma	

using	a	system	of	ODEs	and	used	clinical	data	for	retroactive	validation.		
• Varied	initial	tumor	size	and	growth	rate	to	imitate	a	virtual	population.		Four	

different	therapy	regimens	were	simulated	to	correspond	to	four	different	clinical	
trials.		Identified	a	tumor-size	threshold	for	therapy	effectiveness	which	matched	
patient	data.

• Wells	et	al	(2015)2 developed	a	hybrid	discrete-continuous	(HDC)	agent-based	model	
(ABM).		These	models	treat	cells	as	agents	that	can	interact	with	and	respond	to	other	
cells.
• Observed	that	the	ratio	of	M2	macrophages	to	other	cell	types	was	predictive	of	

tumor	survival.		Spatial	model	necessary	for	predictive	capability.		
• Eikenberry	et	al	(2009)3 developed	a	PDE	of	melanoma	with	immune	infiltrate.

• Showed	that	surgical	removal	of	tumors	with	high	levels	of	immune	infiltrate	could	
promote	growth	of	satellite	metastases,	as	was	observed	clinically.

• Hence,	provided	a	model-based	hypothesis	for	tumor	classification	with	respect	to	
responsiveness	to	surgery.

1Kronik	et	al.	(2012)	Improving	T-cell	immunotherapy	for	melanoma	through	a	mathematically	motivated	strategy:	efficacy	in	numbers?		J.	Immunother. 35,	
116-124.
2Wells	et	al.	(2015)	Spatial	and	functional	heterogeneities	shape	collective	behavior	of	tumor-immune	networks.		PLoS Comput.	Biol.		11,	e1004181.
3Eikenberry	et	al.	(2009)	Tumor-immune	interaction,	surgical	treatment,	and	cancer	recurrence	in	a	mathematical	model	of	melanoma.		PLoS Comput.	Biol.	5,	
e1000362.
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Challenge:	optimal	scheduling	and	dosage	of	treatment	
treatment

• If	you	know	the	treatment	– how	to	determine	the	optimal	schedule	and	dosage	
(not	based	on	trial	and	error)?

• Techniques	to	identify	optimal	treatment	schedules	in	silico include:

Optimal	control	theory1

• Used	for	models	based	on	
continuum	methods.

• States	the	problems	of	
finding	an	optimal	treatment	
plan	in	the	framework	of	a	
controlled	dynamical	system.

• Example:	identify	optimal	ACI	
therapy	in	PK	model	to	
minimize	final	tumor	
concentration2

Genetic	Algorithms3

• Belong	to	class	of	evolutionary	
algorithms.

• System	can	be	agent-based,	discrete,	
continuous,	etc.

• Theory	based	on	principles	of	genetic	
evolutionary	theory.

• Example:	identify	optimal	vaccine	
schedule	for	the	Triplex	vaccine	(for	HER-
2/neu-positive	BC)	using	an	agent-based	
SimTriplex Model4

1Evans	LC	(2017).		An	introduction	to	mathematical	optimal	control	theory,	Version	0.2.	See	https://math.berkeley.edu/evans/control.course.pdf
2Burden	et	al	(2004).		Optimal	control	applied	to	immunotherapy.		Discr. Continuous	Dyn.	Syst.	Series	B 4,	135-136.
3Whitley	D.	(1994).	A	genetic	algorithm	tutorial.		Stat.	Comput. 4,	65-85
4Lollini	et	al.	(2006).	Discovery	of	cancer	vaccination	protocols	with	a	genetic	algorithm	driving	an	agent	based	simulator.		BMC	Bioinform.		7,	352.
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Challenge:	design	and	identification	of	combination	treatment	regimes

• Mathematical	modeling	can	help	in	rational	design	of	combination	immunotherapy	
(either	with	just	immunotherapeutic	agents	or	with	immune- and	non-
immunotherapeutic	agents)	to	maximize	treatment	response.

Example	1:	de	Pillis et	al.	(2009)1: chemo-immunotherapy	model.
• Model	comprised	of	six	ODEs	for	combination	chemo- and	immunotherapy	that	includes	tumor	and	

immune	cells,	and	concentrations	of	chemo- and	immuno-therapy	drugs.
• Found	that	success	of	combination	versus	monotherapy	different	based	on	initial	patient	characteristics	

(derived	from	human	clinical	trials	of	metastatic	melanoma).

term reflects the dynamics suggested in Gardner, we use Gardner’s value of a converted to
units of l/mg. Taking the molar mass of doxorubicin HCl as 579.99 g/mol [43], we arrive at
our value for dT as follows:

dT ¼ 1:063 l=mmol
1 £ 106 mmol

1mol

! "
1mol

579:99 g doxorubicin

! "
1 g

1000mg

! "

¼ 1:8328 l=mg:

3.3 dN/dt: The natural killer cells

e/f ¼ 1.11 £ 1021 is equal to the ratio N/C at equilibrium if we ignore the small effect of
IL-2 on NK proliferation in the absence of exogenous supplementation. Since Abbas et al.
([1]; p. 19) indicate that NK cells make up approximately 10% of total circulating
lymphocytes in the absence of a tumour, and the number of activated CD8þT cells L is
several orders of magnitude smaller than N in healthy blood donors and thus negligible
(see the no-tumour equilibrium condition (8)), we can approximate
e/f ¼ 1/9 < 1.11 £ 1021. Note that C here measures the number of total lymphocytes
that are neither activated CD8þT cells nor NK cells.

f ¼ 1.25 £ 1022 was found by metabolic scaling. The average mass of an adult human
male is 77 kg and the average mass for an adult male rhesus monkey is 11.9 kg [40,48].
From Gillooly et al. [19], we see that mass-specific metabolic rate B scales as:

B=M /M21=4;

whereM is mass. We do recognize that there is consideration for different scaling behaviour
depending on the location of cells in the body. However,Gillooly et al. [19] explain thatwhen
the masses of two organisms differ significantly, the scaling law is obeyed with good

precision. We have
We assume that f, corresponding to the turnover rate of NK cells, is proportional to

mass-specific metabolic rate. Since we have fmonkey ¼ 2 £ 1022 for a rhesus monkey
taken from de Boer et al. [9], we have:

f ¼ GðB=MÞ ¼ G0M21=4;

Table 4. Simulation results for patient 9, patient 10. Here, x represents the eradication of the
tumour and o denotes the survival of the tumour).

Simulation

T ¼ 1 £ 106

cells
T ¼ 1 £ 107

cells
T ¼ 1 £ 108

cells
T ¼ 1 £ 109

cells

Patient number 9 10 9 10 9 10 9 10

No treatment x x o o o o o o
Chemotherapy x x x x x x o o
Immunotherapy x x x o o o o o
Chemo-immuno x x x x x o o o

Animal Mass (kg) M 21/4 (kg21/4)

Human 77 0.3376
Rhesus monkey 11.9 0.5384
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1de	Pillis et	al.	(2006)	Mixed	immunotherapy	and	chemotherapy	of	tumors:	modeling,	applications	and	biological	interpretatiosn.		
J.	Theor.	Biol.		238:	841-862.
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Challenge:	design	and	identification	of	combination	treatment	regimes

• Mathematical	modeling	can	help	in	rational	design	of	combination	immunotherapy	
(either	with	just	immunotherapeutic	agents	or	with	immune- and	non-
immunotherapeutic	agents)	to	maximize	treatment	response.

Example	2:	Soto-Ortiz	et	al.	(2016)1: anti-angiogenic	and	immunotherapy	model
• Model	comprised	of	18	ODEs	that	include	tumor,	immune	and	vascular	endothelial	cells,	and	several	

cytokines	and	growth	factors	modeling	anti-VEGF	therapy	(VEGF	has	pro-angiogenic and	
immunosuppressive	activity)	and	administration	of	DC	cells.

1Soto-Ortiz	and	Finley	et	al.	(2016)	A	cancer	treatment	based	on	synergy	between	anti-angiogenic	and	immune	cell	therapies.		J.	
Theor.	Biol.		394:	197-211.
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Fig. 1. Tumor escape when a standard anti-angiogenesis treatment is not continued, and is not combined with a treatment of unlicensed dendritic cells. Although tumor size
is reduced significantly by a standard anti-VEGF treatment started on day 600, the tumor will eventually grow if the anti-VEGF treatment is not expanded, or if no follow-up
DC immunotherapy is administered. (A) number of tumor cells, (B) concentration of free VEGF, (C) number of endothelial cells, and (D) total tumor vasculature.
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Recommendations

I. Intracellular	and	multi-scale	modeling
i. Can	give	insights	into	therapeutic	action	at	intracellular	level,	and	relative	contribution	

of	cell-cell	and	intracellular	activities.
ii. Can	be	developed	from	existing	models	of	signaling	cascades	in	cancers.

II. Addressing	toxicity
i. Incorporation	of	immunotherapy-related	toxicity	can	help	to	optimize	therapy	

predictions	for	maximum	efficacy/minimum	toxicity.
III. Experimental	and	clinical	validation	of	immunotherapy	models.

i. Main	bottleneck	for	wider	validation	and	use	of	mathematical	and	computational	
models	for	purpose	of	developing	novel	therapies.		

ii. Needs	to	be	community-level	initiative	(at	scale	of	organization	or	funding	agencies).
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Recommendations

Thank	you!


