

http://www.eortc.org/recist/

Imaging data and RECIST criteria for the evaluation of tumor response

Saskia Litière EORTC – Biostatistician 08/04/2016

saskia.litiere@eortc.be

A little bit of history

Response Evaluation Criteria in Solid Tumors (RECIST)

Therasse et al JNCI 2000

- Intended for use in clinical trials with <u>primary</u> endpoint of objective response
- Measurable lesion >= 20 mm (10 if spiral CT)
- Unidimensional assessment: Tumor burden assessed by summing longest diameters of all measurable lesions up to 10 (5 per organ)
- Four categories of response: CR*, PR*, SD, PD
- RECIST widely adopted by cooperative groups, industry, academia

Required confirmation

Summary: What HAS changed in RECIST 1.1

	RECIST 1.0	RECIST 1.1	
Measuring tumor burden	10 targets 5 per organ	For response: 5 targets (2 per organ)	
Lymph node	Measure long axis as for other lesions. Silent on normal size	Measure short axis. Define normal size.	
Progression definition	20% increase in sum	20% increase and at least 5 mm absolute increase	
Non-measurable disease PD	"must be unequivocal"	Expanded definition to convey impact on overall burden of disease. Examples.	
Confirmation	required	Required when <u>response</u> primary endpoint—but not PFS	
New lesions		New section which includes comment on FDG PET interpretation	

RECIST: a standardized tool

Simple, objective and uniform

- Across tumour types
- Across sites participating in a clinical trial
- Across clinical trials

While some diversifications can be implemented, RECIST cannot accommodate for all possible protocol specificities (Verweij et al EJC 2009)

Criticisms of RECIST 1.1 include

- not adapted to specific tumor type
- purely based on anatomical burden ("size")
- there are more refined imaging techniques
- not validated for targeted agents

The road ahead

Targeted agents:

- Different mode of action not necessarily leading to obvious tumor shrinkage
- We compiled a database of 50 clinical trials (academia and industry) on approx 23.000 patients

Advanced imaging techniques – FDG-PET:

- Playing an important role in clinical practice, but results from clinical trials are difficult to compare. Lack of harmonization is an important obstacle
- We pooled data from 9 studies (academia and industry) on approx 200 patients to study the sources of heterogeneity of FDG-PET by looking at repeatability data
- We compiled a database of 18 clinical trials (academia and industry) on approx 1.000
 patients to study its added value to the current RECIST

Immunotherapy

- Immune-related response patterns may challenge the classical concepts of progression
- RECIST Working Group is trying to initiate a high-level collaboration with partners from academia, industry and regulatory to address this

What do we need for a new version of RECIST?

Sargent EJC 2009

- Some biological rationale
- Standardized protocol for interpreting measurements
 - Understanding sources of variability: imaging methodology, reader variability, patient heterogeneity, role of missing data
- Understanding of its limitation(s)
- Evidence of correlation with a true endpoint
 - Patient benefit (PRO?, OS?)

There is no real 'consistent' gold standard

Evidence of correlation: surrogacy?

When an event on the "surrogate" leads to a change in treatment decision, the relationship will be obscured

What else is needed?

Collecting data for validation requires time, persistence and a lot (!) of data sharing negotiation

- Patient privacy
- Patient data anonymization
 - Digital images vs reported data
 - Resources
- Agreements not to report/repeat study level analyses

The clinical trial data as limiting factor

- Elephant number 1: the chicken and egg issue of progression
 - Sharing of scanned results starts with the study and stops at RECIST PD
 - Typically in advanced disease setting, this leaves us with few observations
 - ... so we cannot assess less stringent definitions of "PD" because of lack of data
- Elephant number 2: incomplete data. In the RECIST 1.1 data warehouse
 - for 14% of patients no tumor lesion measurements provided at time of non-target progressive disease or new lesions
 - for 10% of patients measurements incomplete for target lesions at time of progression (i.e. only progressive lesion reported) resulting in a non-evaluable result

The clinical trial data as limiting factor

Elephant number 3: the role of non-target and new lesions?

Table 1

Reason to stop follow-up of target lesion measurements (note that categories are not mutually exclusive).

Reason	Breast cancer $(n = 1141)$	Lung cancer $(n = 1853)$	Colorectal cancer $(n = 734)$
Occurrence of a new lesion	507 (44%)	530 (29%)	309 (42%)
Non-target progressive disease	280 (25%)	505 (27%)	247 (34%)
Death	4 (0.4%)	1 (0.1%)	0
Lost to follow-up [‡]	28 (2.5%)	8 (0.4%)	3 (0.4%)
Progression of target lesions§	437 (38%)	961 (52%)	417 (57%)
End of follow-up [†]	320 (28%)	552 (30%)	197 (27%)

[‡] Last measurement reported is also last known date to be alive.

Litière et al. EJC 2014

[†] Defined as none of the above.

[§] Progression = increase from smallest sum of target lesions.

Final remark

- New technologies should be incorporated rapidly but this should be based on evaluation of fairly massive data (i.e. validated)
- Therefore, in order to validate new biomarkers and/or response criteria we need the community to pull together to
 - ensure standardization and harmonization of the data collection across different sites, and
 - pool the data in the context of large international collaborative efforts such as RECIST

Acknowledgements

http://www.eortc.org/recist/

- Jan Bogaerts
- Elizabeth de Vries
- Lesley Seymour
- Lalitha Shankar
- Larry Schwartz
- and the other members of the RECIST Working Group
- with special thanks also to
 - Sandra Collette
 - Gaëlle Isaac
 - Zeina Tayah

Thank you

http://www.eortc.org/recist/

