

Genomics and imaging data

S Nougaret, MD, PhD, Montpellier, France

Oncologic Imaging in the Era of Precision Medicine

- Precision medicine: treating the right patient, with the right drug, at the right time, has become the paradigm of modern medicine
- Genomic is essential to this new paradigm

Oncologic Imaging in the Era of Precision Medicine

 Cancer is a genetically heterogeneous disease undergoing continuous evolution spatially and temporally

Primary tumors are spatially and temporally heterogeneous

Metastasis de-differentiate in 50% of cancers & have different biologic features

Vogelstein et al. Cancer Genomic Landscapes. Science 2013 March 29; 339(6127): 1546-1558

RADIOGENOMICS: NEXT GENERATION SEQUENCING IMAGING

Links specific imaging traits (radiophenotypes) with geneexpression profiles

Rivka R. Colen

KIDNEY CANCER

Advantages of imaging over (multiple) biopsy

- Repeated evaluations of all lesions at different time points
- Assessment of heterogeneity
- Capture of dynamic genomic evolution

Preliminary Data

- 233 clear-cell RCC (TCGA and MSKCC cohorts)
- Mutations: VHL, BAP1, PBRM1, SETD2, KDM5C
- Selected CT Imaging Features
- Retrospective, exploratory design

Karlo Radiology. 2013

TCGA NCI IMAGING PROGRAM: KIDNEY CANCER

Associations:

 Increased vascularity (incl. nodular tumor enhancement) and well-defined margins suggest
VHL mutation

Evidence of renal vein invasion suggests BAP1 & KDM5C

• Multicystic clear cell RCC associated with less mutations (absent BAP1, KDM5C & BAP1) compared to solid clear cell RCC (PBRM1 & VHL more common)

 Potential implications for assessment of tumor aggressiveness and active surveillance

TCGA NCI IMAGING PROGRAM: OVARIAN CANCER

- CLOVAR Mesenchymal subtype associated with diffuse peritoneal disease shape and mesenteric tethering
- Platinum resistant in ~70%
- Lower optimal surgical debulking

Vargas Radiology. 2015

High Grade Serous Ovarian Cancer: BRCA Mutation Status and CT Imaging Phenotypes

Acknowledgments Sala E- Lakhman Y- Moskowitz C- Goldman D

Rationale

BRCA + (15-17%)

 Higher response rates to first and subsequent lines of platinum-based Cx
Specific chemosensitivity to inhibitors of poly-ADP ribose polymerase
Longer relapse free period
Higher rate of optimal cytoreduction

BRCA — (80%)

 Lower response rates to first and subsequent lines of platinum-based Cx
Shorter relapse free interval

Rationale/Objective

BRCA +

- "Pushing" and round metastases
- May be associated with the rate of optimal cytoreduction

Soslow, Modern Pathology, 2014 Reyes, Modern Pathology, 2014

To evaluate **CT imaging features** that may be associated with presence of **BRCA mutations**.

Materials and Methods

Volume of nodular disease

108 Patients with HGSOC

- Tested for BRCA mutations
- Primary surgical cytoreduction
- Pre-operative contrast-enhanced CT

Primary ovarian mass:

- Margin (smooth or irregular)
- Mass architecture (cystic, solid)
- Papillary projections
- ✓ Calcifications

Extent of disease:

- Peritoneal implant presence and their locations
- Pattern of peritoneal disease (<u>nodular or infiltrative</u>)
- Mesenteric involvement
- Lymphadenopathy

Nodular Infiltrative

Results

 Pattern of peritoneal disease varied according to the BRCA mutation status (p < 0.02 for both readers).

 Mesenteric involvement by tumor was more frequent in BRCA - (p<0.01 for both readers)

Rectal Cancer MRI and Transcriptome Sequencing

RECTAL CANCER MRI RESPONSE

MRI BIOMARKERS:

DWI

VOLUMETRY

MRITRG

TRG 5: No response, same appearance as original tumor

TRG 4: Slight response: small areas of fibrosis or mucin, but mostly tumor

TRG 3:: Moderate response: > 50% fibrosis or mucin, and visible tumor (2 drawings: fibrosis: dark, mucin: grey panel)

TRG 2: Good response: dense fibrosis (>75%); no obvious residual tumor or minimal residual tumor TRG 1: Complete radiologic response: no evidence of any abnormality

> Patel, JCO, 2011 Nougaret, Radiology 2012 Nougaret, Radiology 2015

DILEMMA

Circulating microRNAs:

- Circulating miRNA associated with a wide range of diseases such as cancer, autoimmune disease, heart faillure ...
- Presence of miRNAs in all body fluids
- Multiple advantages of using circulating miRNAs as biomarkers:
 - ✓ Easy simple blood uptake
 - High stability of miRNAs in body fluids

• RT-qPCR is the gold standard for the miRNAs detection

- High sensitivity and specificity
- Easy to use.
- ✓ Fast (~3 Hours)
- ✓ Reduced costs

miRNA – DWORAK- MRI

- Patient groups according to Dworak Tumor Regression Grading (TRG
 - N=34 DWORAK [0, 1, 2]: Non-responders
 - N=35 DWORAK [3, 4]: Responders

AUC= 0.879

Sensitivity (responder) : 80% Specificity (non-responder): 78% The miCRA signature: 8 miRNAs

Characteristics	Total patients n = 69(%)
Tumor Regression Grade	
TRG 0	2 (2.9)
TRG 1	15 (21.7)
TRG 2	18 (26.1)
TRG 3	22 (31.9)
TRG 4	12 (17.4)
Tumor Regression Grade	
Non-responder group TRG 0, 1 and 2	35 (50.7)
Responder group TRG 3 and 4	34 (49.3)

• Combined association ?

Modeling consistency of a solid tumor by kppv classification

Yann Cabon, Gregory Marin, Nicolas Molinari, Stephanie Nougaret, Isabelle Vachier

Correlation between Spatial heterogeneity And genetic heterogeneity

Mathematic and Statistic

