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Personal Use of Bayesian Methods in Pharmaceutical 

R&D 

• Pharmaceutical Development 

– Bayesian Hierarchical model for drug stability studies 

– Assessment of Bioequivalence – single and two-stage Bayesian designs 

• Pre-Clinical Toxicology 

– Bayesian  models incorporating historical control information in carcinogenicity 

studies 

– Bayesian hierarchical model accounting for litter effects in teratology studies 

– Acute toxicity studies – estimation of LD50 

• Clinical Development 

– Model Uncertainty in Crossover Designs 

– Bayesian Adaptive Designs – Phase I and Phase IIb 

– Assessment of Clinical equivalence  

– Bayesian  models incorporating historical control information 

• Production  

– Acceptance Sampling for Rare Defects – Utilising historical data 
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Unifying Themes 

• Probability of belonging to regions of parameter space 

 

– “probabilities computed from the Bayesian approach 
provide more relevant information to decision makers 
and are easier to interpret” 

 (Harrell F and Shih YC. International Journal of Health 
Technology Assessment,2001)  

  

• Model Uncertainties 

• Prediction 

• Parametrisation 

• Priors 
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Topics that Currently Interest Me 
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Topics that Currently Interest Me 
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Calibration of Bayesian Procedures  
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Regulatory  Considerations 

• Requires simulations to assess Bayesian approaches. 

• If type I error to large 

– change success criterion (posterior probability) 

– reduce number of interim analyses 

– discount prior information 

– increase sample size 

– altering calculation of type I error 

• “the degree to which we might relax the type I error control is a case-

by-case decision that depends …. Primarily on the confidence we have 

in prior information” 
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Guidelines for Reporting Bayesian Analyses 

ROBUST BAYESWATCH BASIS 

Prior 
Distribution 
    Specified 

    Justified 

    Sensitivity   
analysis 

Analysis 
    Statistical model 

    Analytical 
technique 

Results 
    Central tendency 

    SD or Credible 
Interval 

 

Introduction 
    Intervention described 

     Objectives of study 

Methods 
    Design of Study 

     Statistical model 

     Prior / Loss function? 

        When constructed 

        Prior described 

        Loss function described 

     Use of Software – MCMC , 
starting values, run-in, length of 
runs, convergence, diagnostics 

Results 

Interpretation 
    Posterior distribution summarized 

     Sensitivity analysis if 
alternativepriors used 

Research question 

Statistical model 
     Likelihood, structure, prior & rationale 

Computation 
     Software - convergence if MCMC, validation, 

methods for generating posterior summaries 

Model checks, sensitivity 
analysis 

Posterior Distribution 
     Summaries used: i). Mean, std, quintiles  ii) 

shape of posterior, (iii) joint posterior for 
multiple comparisons, (iv) Bayes factors  

Results of model checks and 
sensitivity analyses 

Interpretation of Results 

Limitation of Analysis 
      

What’s  

Missing? 
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Guidance for the Use of Bayesian Statistics in Medical 

Device Clinical Trials – FDA/CDRH 2010   

• “Because of the inherent flexibility in the design of a 
Bayesian clinical trial, a thorough evaluation of the 
operating characteristics should be part of the trial 
design. This includes evaluation of:  

– probability of erroneously approving an ineffective or 
unsafe device (type I error)  

– probability of erroneously disapproving a safe and 
effective device (type II error)  

– power (the converse of type II error: the probability of 
appropriately approving a safe and effective device)  

– sample size distribution (and expected sample size)  

– prior probability of claims for the device  

– if applicable, probability of stopping at each interim 
look. “ 
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Bayesian Monitoring of Clinical Trials 

• Development follows Grossman et al (SIM, 1994) 

– All data & priors are normal (known variance s2) 

– A maximum of n patients in each of 2 groups (trts:A and B) 

– T interim analyses after tn/T (t=1,..T) patients per group 

– Of interest is d=mA-mB 

– The observed difference between groups of the tth cohort is dt 

with variance Tsd
2/n (where sd

2=2s2) 

– Prior information for d is available: corresponding to fn patients 

per group centred at d0 

 

• Bayes Theorem implies that at the tth interim the posterior for d is: 
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Bayesian Monitoring of Clinical Trials 

  ttC 1D|obPr dd• Stopping rule: 

  

 

 equivalent to: 

 

  

 requiring  

 

 This is the general case and there are a number of 

 “tuning” parameters: t, f, dC and d0 
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Bayesian Monitoring of Clinical Trials 

Special Case 1: T=1, dC=0 
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• Stopping rule requires: 

 

• What are the frequency properties of this rule? 

• Under the Null Hypothesis: d ~ N(0,s2
d/n) 

 

 

 

• To control this at the 2.5% level we need 
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Contours of Bayesian Decision Rule () 

To give a One-sided Type I Error 0f 2.5% 
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Bayesian Monitoring of Clinical Trials 

Special Case 2: T=1, 0.025  

• In this case 

 

 

 

•  giving a condition for  D which can be used to find a 

value for dc to give the appropriate type I error. 
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Contours of Bayesian Decision Rule (dCsd/n
1/2) 

To give a One-sided Type I Error 0f 2.5% 
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Bayesian Monitoring of Clinical Trials 

Special Case 1 & 2 

• Whichever approach is used is turns out that using 

this approach is effectively discounting the prior 

information. 

 

• To see this substitute                                 into  

 

                                    giving 

 

 which is the standard, frequentist decision criteria – 

 in other words 100% discounting 
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Bayesian Monitoring of Clinical Trials 

Special Case 3: t0.025, dC=0, d0=0 (Sceptical Prior) 

• A sceptical prior can be set 

up formally. 

• Prior centred around 0, with 

a small probability g of 

achieving the alternative dA - 

p(d>dA) = g 

• From which: 

• Now suppose the trial has 
been designed with size a 
and power 1-b to detect the 
alternative hypothesis dA. 

 

• So that: 

 

• From which:  

 

• Example:   α=0.05, 1- b=0.90 
, g=0.05 => f ~ 1/4 
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Bayesian Monitoring of Clinical Trials 

Special Case 3: t0.025, dC=0, d0=0  

• In this case: 

 

 

  

  
 
 

•  which is equivalent to increasing the critical region by 
a factor 

 

 

Grossman et al(1994) call f the “handicap” 
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Bayesian Monitoring of Clinical Trials 

Special Case 3: t0.025, dC=0, d0=0  

• The frequentist properties of this handicapping are not so 

easy to derive. 

• For T=2 – a single interim – the frequentist type-I error can 

be calculated using a bivariate normal probability function, 

e.g. the SAS function PROBNRM. 

• For T > 3 Grossman et al (1994) use simulation to 

determine the handicap f that controls the two-sided type I 

error at 5% and 1% (20,000,000 trials) 

• Alternatively use can be made of the algorithm derived by 

Armitage, MacPherson and Rowe (JRSSA, 1969) – used a 

SAS implementation of FORTRAN program by Reboussin, 

DeMets, Kim and Lan or SEQ, SEQSCALE & SEQSHIFT 

(PROC IML) 
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Comparison of Critical Values 

O’Brien/Fleming, Pocock & Handicapped Bayes 
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23 

Handicapped Bayes versus  

Optimal Designs (Pocock, 1982) 

• Investigated properties of group sequential designs, in particular the Average 
Sample Number (ASN) 

 

 

 

 

 

 

 

 

 

• Generated “optimal” GSDs, for given power minimum ASN 

Maximum 

number 

of 

groups, K 

Nominal 

significance 

level, a’ 

Required 

number* of 

patients per 

group 2n 

Maximum 

number* of 

patients 

2nN 

Average number 

of patients until 

stopped under HA 

(ASN) 

1 0.05 51.98 52.0 52.0 

2 0.0294 28.39 56.8 37.2 

3 0.0221 19.73 59.2 33.7 

4 0.0182 15.19 60.8 32.3 

5 0.0158 12.38 61.9 31.3 

10 0.0106 6.50 65.0 29.8 

20 0.0075 3.38 67.6 29.5 

Multiply  

by s2/d2 
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Comparison of Critical Values 

Optimal ASN (75/80% Power) & Handicapped Bayes 
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Bayesian Adaptive Randomisation 

Thall and Wathen (Eur J Cancer, 2007) 

• Back to an idea of Thompson (Biometrika, 1933) 

• Similar to RPW – binary outcome 

• Randomisation to treatment B on the basis of a function 

of  P(pA < pB|Data) although in practice Thompson used 

P(pA < pB|Data). 

• Unstable 

• Thall and Wathen (European J Cancer, 2007) 
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Bayesian Adaptive Randomisation 

Impact of Choice of C 
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Bayesian Adaptive Randomisation 

Impact of Choice of C 

• Thall and Whalen recommend C= n/(2N) 

– n=current sample size 

– N=study’s maximum sample size 

• Begins with C=0, ends with C=1/2 

• C=1/2 “works well in many applications” 

 

• Giles et al (J Clin Oncology, 2003) 

– Similar idea – but now with 3 arms (2 experimental, 1 

control) using functions of P(m1<m0|data), 

P(m2<m0|data), and P(m1<m2|data), - m2, m1, and m0 

are the median survival times 
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An Example 
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A Major Issue 

• As sample size increases posterior probability increases 

• Even if treatments are similar  

• This is in contrast to RPW based on success rates 

• Maybe appropriate if the new treatment is much safer 

than the standard 
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2 x 2 Contingency Table 

Data Structure 
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Treatment B r2 (pB) n2-r2 (1-pB) 
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2x2 Contingency Table - Posterior Inference 

“Uninformative Priors” : aA= bA= aB= bB = 1 

• The probability of interest is  

 

 

 

 

 

 

     based on the cumulative hypergeometric function as is 

Fisher’s exact test  (Altham JRSSB1969; Raiffa & 

Schlaifer, Applied Statistical Decision Theory, 1960)) 
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Historical Aside 

• Thompson(1935) proved the identity:  

 

 

 

 

 

  

 where:   W=n1+1, B=n2+1, w=n1-r1 and b=n2-r2 

 

• This second term is the probability under sampling without 

replacement from a mixture of W white balls and B black 

balls that we will get w white balls before b black balls  
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r1=n1-r1=0 

r2=n2-r2=0 

w=1, b=1 

r1=0, n1-r1=1 

r2=2, n2-r2=0 

w=2, b=1 

r1=2, n1-r1=2 

r2=4, n2-r2=3 

w=3, b=4 

r1=0, n1-r1=1 

r2=2, n2-r2=0 

w=2, b=1 

Thompson(1935)  

Mechanical Randomisation & Simulation 

• For W=n1+1,  B=n2+1 : choose  A if w=n1-r1+1 white balls occur before b=n2-

r2+1 black balls 
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Bayesian AD – Thall & Wathen(EJC,2007)  

Type-I Error Based on T&W Criterion   

• Thall & Wathen illustration is based on:  

 

– N = 200 

– Stopping Rules 

 

• If P(pA<pB|Data) > 0.99  stop and “choose” B 

• If P(pA<pB|Data) < 0.01 stop and “choose”  A 

(futility) 

 

• What does the type I error look like ? 

• A complication is that the control rate - pA - is a nuisance 

parameter 
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Bayesian AD – Thall & Wathen(EJC,2007) N=200 
Randomisation Probabilities (105 simulations) 
pA=0.25   , pB=0.25(0.05)0.45 
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Bayesian AD – Thall & Wathen(EJC, 2007) N=200 

Control One-Sided Type-I Error 

• The issue is the number of tests being conducted 

 

1. Reduce the problem using cohorts (20, 50 or ?) 

 

2. Or choose decision criterion  

 

   P(pA<pB|Data)>   

 

to control type-I error 
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Bayesian AD – Thall & Wathen(EJC, 2007) N=200 

Type-I Error Based on P(pA<pB|Data)>.99747 

 106 Simulations / control rate  
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Criticism of This Approach 

• Korn and Freidlin (J Clin Oncol, 2011) 

• Their simulations “show”: 

– Thall & Wathen AD inferior to1:1 randomisation in 
terms of information, benefits to patients in trial 

 

• True 

• I agree with Don Berry (J Clin Ocol 2011) that the 
greatest benefits are likely to accrue for trials with more 
than 2 arms 

• Rather as in the case of T=1 in the group sequential 
case greater complexity gives more scope for Bayesian 
designs 
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Conclusions 

Determining Decision Criteria 

• Appropriate approach: 

 

– Choose decision rule based on clinical or commercial 

criteria. 
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POC Study in Neuropathic Pain 

Smith et al (Pharmaceutical Statistics, 2006) 
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Conclusions 

Determining Decision Criteria 

• Appropriate approach: 
 

– Choose decision rule based on clinical or commercial 

criteria. 

– Investigate operating characteristics 

– If they are unacceptable e.g., type I error > 20% then look 

to change them 

– BUT don’t strive to get exact control 
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Banishment of p-values 
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Recent Editorial 

• “from now on BASP is banning NHSTP (null hypothesis significance testing 

procedure” 

 

• NO MORE p-values  

 

• Unthinking use of statistics 
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Robert Matthews  

Sunday Telegraph, 13 September 1998 

“The plain fact is that 70 years ago Ronald Fisher gave 

scientists a mathematical machine for turning baloney into 

breakthroughs, and flukes into funding. It is time to pull the 

plug” 
 

49 © Andy Grieve 



Choosing Type I and Type II Errors 
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Can the pharmaceutical industry reduce attrition rates? 

Kola & Landis (2004) NATURE REVIEWS | DRUG DISCOVERY 
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2012 Ecology Papers on Significance Testing 

Environ. Sci. Technol., 46, 9249-9255, 2012. Integ. Environ. Ass. Man. 8, 563-369, 2012 

Significance, June 2012, 29-30. PLoS ONE, 7, e32734, 2012.  
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“If XXX during the 1st  week is kept as 
the primary endpoint, it has at least to 
be supported by a convincing positive 
trend for clinically relevant long-term 
effects like XXX at a time-point of at 
least six months. It is recommended that 
XXX is considered as a key secondary 
endpoint, even if statistical significance 
at the usual level of 5% two-sided might 
not be necessary.“ 
 
EMA Scientific Advice Response – 2012 
 
“no scientific worker has a fixed level of 
significance at which, from year to year, 
and in all circumstances, he rejects 
hypotheses; he rather gives his mind to 
each particular case in the light of his 
evidence and his ideas” 
 
Fisher (Statistical Methods and 
Scientific Inference, 1956) 

Should Type I Error be Fixed in Drug Development? 

“We and others propose that a one-
sided test of the null hypothesis that 
the true primary outcome is no 
different between treatment and 
control with a false-positive rate of 
0.20 (type I error) is appropriate.” 
 
Ratain and Sargent (Eur. J Cancer, 
2009) 
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Congo 
Uganda 
Uganda 
Uganda 
Congo 
Uganda 
Congo 
Congo 
Sudan 
Congo 
Congo 
Congo 
Gabon 
Uganda 
South Africa  
Gabon 
Gabon 
Congo 
Ivory Coast 
Gabon 
Sudan 
Congo 
Sudan 
Congo 

Population Mean 

2012 

2011 
2008 
2007 
2005 
2004 
2003 

2001 
2000 

1996 

1995 
1994 
1979 
1977 
1976 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
                                                                                   Case Fatality Rates 

Bayesian Hierarchical Meta-analysis of Case Fatality 

Rate Data ( source: www.who,int )  
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Alternatives to Maximizing Power for Fixed Type I Error 

 

55 

“The extent to which scientific caution need be exercised and 
the importance of discovery of an effect (alternatively the cost 
of making type 1 and type 2 errors) will vary from situation to 
situation. This would imply that conventional significance 
levels should be abandoned and that with any particular piece 
of research a should be set with regard to the costs in hand” 

Statistical Inference: A Commentary for the Social & 
Behavioural Sciences – M Oakes, 1986 

“Conventionally the probability of type I error is set at 5% or 
less or as dictated by any adjustments made necessary for 
multiplicity considerations; the precise choice may be 
influenced by the prior plausibility of the hypothesis under test 
and the desired impact of the results.” 

ICH E9 (1998) - Statistical Principles for Clinical Trials 
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Alternative to Maximizing Power for Fixed Type-I Error 

• Choose a and b to minimise  
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Alternative to Maximizing Power for Fixed Type-I Error 

“goal of statistical testing is to aid us in making conclusions 
that limit the probabilities of making mistakes, whether Type 
I or II errors. We think a strong case can be made that in 
most studies … a should be set with the objective of either 
minimising the combined probabilities of making Type I or 
Type II errors at a critical effect size, or minimizing the 
overall cost  associated with Type I and Type II errors given 
their respective probabilities”   
     
Mudge et al (PLoS, 2012) 
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Alternative to Maximizing Power for Fixed Type-I Error 

• These suggestions correspond to : 

1. Minimise  Ψ = 𝛼+𝛽

2
  

2. Minimise  Ψ =
𝜔0𝛼+𝜔1𝛽

𝜔0+𝜔1
=  

𝜔𝛼+𝛽

𝜔+1
 ,   where 𝜔 = 𝜔0/𝜔1 is the ratio 

of the costs of making the corresponding error.  

   

(Mudge et al also consider the case where 0 and 1 are 

the prior probabilities associated with the null and 

alternative hypothesis.) 
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Determination of Sample Size 

-4 -2 0 2 4 6 8 

Standardised Normal deviate 

𝛿 =  
𝑛

𝑘

𝛿0
𝜎

 𝛿 = 0 

𝛼0 
𝛽0 

𝑧1−𝛼0 

𝑛 =  
𝑘𝜎2 𝑧1−𝛼

0
+ 𝑧1−𝛽

0

2

𝛿0
2   

-6 
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Determining The Optimal a (1) 

• For a given n, k, s, a and d0 the probability of a type II error 

for testing H0: m  m0 vs H1: m  m0d0  is given by 

 

 

 

 

• For a given weight  ω – relative prior probabilities or ratio 

of costs – the weighted sum of the type I and type II error is 

𝛽 = 1 − 𝛷
𝑛

𝑘

𝛿0
𝜎
+ 𝑍𝛼 = 𝛷 𝜃 + 𝑍𝛼   𝜃 =

𝑛

𝑘

𝛿0
𝜎

 

Ψ(α) =
𝜔𝛼 + 1 − 𝛷 𝜃 + 𝑍𝛼

𝜔 + 1
 

 

60 60 © Andy Grieve 



 

61 

Weighted Sum of Error Rates as Function of  a (k=1, 

s=1, d0= 2, n=21, =3) 
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Determining The Optimal a (2) 

• The minimum of this function occurs when                                   

                                        

                           and 

       

•  Minimum value                                              

                                                                                  
                  

 

  ( = 1 => a = b) 
 

Ψ =
𝜔𝛷 −

𝑙𝑛(𝜔)
𝜃

−
𝜃
2
+ 𝛷

ln 𝜔
𝜃

−
𝜃
2

𝜔 + 1
 

α = 𝛷 −
ln 𝜔

𝜃
−
𝜃

2
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𝛽 = 1 − 𝛷 −
ln 𝜔

𝜃
+
𝜃

2
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Typical Values for Type I and Type II Rates and 

Implications for the Relative Costs of These Errors  

• If n has been chosen on the basis of  

     then given a value of  the optimal value of a is given by 

 

 

 

• For what value of  does a=a0? 

 

 

     

     and since 

 

  

𝑛 =  
𝑘𝜎2 𝑧1−𝛼

0
+ 𝑧1−𝛽

0

2

𝛿0
2   

α = 𝛷 −
ln 𝜔

𝜃
−
𝜃

2
 

𝑛 =  
𝑘𝜎2 𝑧1−𝛼

0
+ 𝑧1−𝛽

0

2

𝛿0
2 ⇒

𝑛𝛿0
𝜎

= 𝜃 = 𝑍1−𝛼0 + 𝑍1−𝛽0 

𝜔 =
𝜙 𝜃 + 𝑍𝛼
𝜙 𝑍𝛼

⇒  𝜔 =
𝜙 𝑍1−𝛽0
𝜙 𝑍𝛼0
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Optimal Weights Giving Standard  

Type I and Type II Error Rates 
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3.00 
1.76 
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Sample Sizing Based on Weighted Errors 

• Mudge et al (2012): “Alpha–beta optimization can also allow 

sample sizes to be estimated for a desired average 

probability or cost of error” 

• How ?   

  

    is a function  and .  

• If 0 is the maximum value of  (,) - solve 0 =  (,) in 

terms of 2  

• The appropriate sample size is 𝑛 = 𝑘𝜃2𝜎2/𝛿0
2

  which has the 

standard form for sample sizing 𝑛 = 𝑘 𝑧1−𝛼
0
+ 𝑧1−𝛽

0

2
𝜎2/𝛿0

2 

• Must be solved numerically. 

Ψ =
𝜔𝛷 −

𝑙𝑛(𝜔)
𝜃

−
𝜃
2
+ 𝛷

ln 𝜔
𝜃

−
𝜃
2

𝜔 + 1
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Sample Size Factor to Control the Weighted (ω or ω-1) 

Sum of Error Rates to be ≤ Ψ0 
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Alternative Form of Neyman-Pearson Approach 

• Neyman Pearson Lemma (1933) sought a critical  region  

R(x) maximised the power 1-b. 

• Suppose now we seek a critical  region to minimise the 

weighted average of a and b – weights w0 and w1. 

Ψ = 𝜔0Prob Type I error    +  𝜔1Prob Type II error  

                        =   𝜔1−  𝜔1𝑝 𝑥 𝐻1 −𝜔0𝑝 𝑥 𝐻0 𝑑𝑥

𝑅(𝑥)

 

                       ⇒ 𝑅 𝑥 =  𝑥: 𝜔1𝑝 𝑥 𝐻1 > 𝜔0𝑝 𝑥 𝐻0 ⇒
𝑝 𝑥 𝐻1
𝑝 𝑥 𝐻0

>
𝜔0
𝜔1
=  𝜔 

 
likelihood ratio 
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Simplest Case - One-Armed Study 

Normal mean (k=1), known variance 

• Null hypothesis    - H0: m  m0  

     Alternative hypothesis  - H1: m  m0d0 

  
 

 

 

 

 

 

𝑝 𝑥; 𝐻0 = 𝜎2 −𝑛/2𝑒𝑥𝑝 −
1

2𝜎2
𝑛 − 1 𝑠2 + 𝑛(𝑥 − 𝜇0)

2  

𝑝 𝑥; 𝐻1 = 𝜎2 −𝑛/2𝑒𝑥𝑝 −
1

2𝜎2
𝑛 − 1 𝑠2 + 𝑛(𝑥 − 𝜇0 − 𝛿0)

2  

 
   

𝑝 𝑥;𝐻1
𝑝 𝑥;𝐻0

= 𝑒𝑥𝑝 −
𝑛

2𝜎2
−2 𝑥 − 𝜇0 𝛿0 + 𝛿0

2  >  𝜔 

⇒
𝑛 𝑥 − 𝜇0
𝜎

  > 𝑛
𝛿0
2𝜎
+

𝜎

𝑛𝛿0
𝑙𝑛 𝜔 =  

𝜃

2
+
𝑙𝑛(𝜔)

𝜃
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Likelihood Principle 

• The likelihood principle says that how the data are 

arrived at is irrelevant to the inferences that are to be 

drawn.  

• e.g. a single arm, open-label, clinical trial is run and the 

outcome is binary, success or failure – perhaps a phase 

II oncology study. 
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1. Fixed sample study 12 patients 

are treated; of these 9 respond 

successfully. H0: p=0.5.  

1.   
12
𝑘
0.512  12

𝑘=9 = 0.073 

 

 

 

 

 

2. Patients to be treated until 3 

treatment failures. The 3rd failure 

occurs when 12 patients have 

been treated. H0: p=0.5.  

2.   
𝑘 + 3 − 1

𝑘
0.5𝑘+3∞

𝑘=9   = 0.033 

 

 

 

 

 

3. Patients to be recruited for 2 

weeks at which 12 patients 

treated with 9 successes. 

  

3. What is basis for a p-value? Assume 

number of patients recruited is 

Poisson  with mean 10. What are 

more extreme cases: 8/10 & 13/15? If 

so, p-value is 0.079. If mean is 5, 

p=0.180; if mean=20, p=0.018 

 

 

 

 

4. Plan to recruit 50 patients but 

funding runs out after 12 patients  

treated  with 9 successes.  

4. No idea 

 

 

 

 

 

Scenario p-value 
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Likelihood Principle – 4 Scenarios 

70 © Andy Grieve 



Likelihood Function 

• For some scenarios the calculation of the p-value was 

simple, for others more complicated and for Scenario 4. 

perhaps impossible. Despite these difficulties the 

likelihood function for the unknown success proportion p 

is the same for each scenario: p9(1-p)3 
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Link to Bayesian Inference 

   Null             - 𝑃 𝐻0:  𝜇 = 𝜇0            = 𝜋0 • Priors 
        Alternative   - 𝑃 𝐻1:  𝜇 = 𝜇0 + 𝛿0  = 𝜋1 

 

 

• Bayes theorem :  

 

 

• 𝑃 𝐻0 𝑥  < 0.5  =>  

 

 

 (Pericchi and Pereira, 2012, Unpublished) 

 

𝑃 𝐻0 𝑥 =
𝜋0𝑝 𝑥 𝐻0

𝜋0𝑝 𝑥 𝐻0 + 𝜋1𝑝 𝑥 𝐻1
 

𝑝 𝑥 𝐻1
𝑝 𝑥 𝐻0

>
𝜋0
𝜋1
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Discussion 

• This is not new - Savage & Lindley, Cornfield (1960s), 

DeGroot (1970s), Bernardo & Smith (1990s), Perrichi & 

Pereira (2012, 2013) -> solves Lindley ‘s paradox. 

• Cornfield(1966) showed that minimising the weighted 

errors is also appropriate in sequential (adaptive) trials. 

• Spieglehalter, Abrams & Myles (2004) quote Cornfield “the 

entire basis for sequential analysis depends upon nothing 

more  profound than a preference for minimizing b for 

given a  rather than minimizing their linear combination. 

Rarely has so mighty a structure and one so surprising to 

scientific common sense, rested on so frail a distinction 

and so delicate a preference.”  
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