Poisson-gamma model for patients' recruitment in clinical trials:

Investigations on boundaries of relevancy by simulation studies.

Nathan Minois

Guillaume Mijoule Stéphanie Savy Valérie Lauwers-Cances Sandrine Andrieu Nicolas Savv

Workshop "Modélisation et simulation d'essais cliniques"

Cohort study

Summary

- Recruitment model
- Robustness investigations

- Cohort study
 - Cohort definition
 - Recruitment process

Definitions

Epidemiological cohort: Medical follow-up of a target population.

It is divided in three phases.

- Recruitment: By means of investigator centres, the necessary sample size of the study N is recruited.
- Follow-up: Monitoring of patients' state through medical visits.
- Analysis: Statistical test run on the data collected inserm

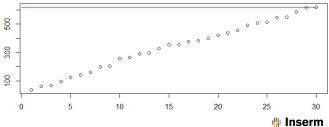
Recruitment process

Introduction

Given the necessary sample size of the study N.

The recruitment process aims to reach *N* by means of several investigator centres.

The variable of interest is the duration of the recruitment.



Recruitment model

- Cohort study
- Recruitment model
 - Notations
 - Poisson-gamma model
- Robustness investigations

Global parameters:

- N : number of patient to recruit.
- C : number of investigator centres.

Model parameters :

- \bullet (α, β) : parameters of the gamma distribution.
- λ_i : the rate of the poisson process for centre *i*.
- t₁: the interim time of observation.

Observations:

- k_i: recruitment of centre i at time t₁.
- τ_i: the duration of activity of centre i up to t₁.

Gamma distribution parameters

Theorem

At time t₁, the maximisation of the likelihood function gives us $(\hat{\alpha}, \hat{\beta} = 1/\hat{\mu}).$

$$M_C^{\Gamma}(\alpha,\mu) = \alpha \ln(\frac{\alpha}{\mu}) - \ln\Gamma(\alpha) + \frac{1}{C} \sum_{i=1}^{C} \left[\ln\Gamma(\alpha + k_i) - (\alpha + k_i) \ln(\frac{\alpha}{\mu} + \tau_i) \right].$$

They are the a-priori parameters of the bayesian estimation.

Poisson-gamma mode

Inclusion process estimation

Bayesian reestimation

Theorem

The density of $\lambda_i | (N_i(t_1) = k_i)$ is :

$$\begin{aligned} \rho_{\theta}^{t_1}(x) &= \frac{\mathbb{P}[N_i(t_1) = k_i | \lambda_i = x] p_{\theta}(x)}{\mathbb{P}[N_i(t_1) = k_i]} \\ &= M e^{-(\beta + \tau_i)x} x^{k_i + \alpha - 1} \mathbb{1}_{x > 0} \end{aligned}$$

This is a Gamma distribution with parameters $(\alpha + k_i, \beta + \tau_i)$.

Inclusion process estimation

Approximation of the global rate

We consider $\forall i = 1, \dots, C$:

•
$$m_i = \mathbb{E}[\lambda_i] < \infty$$

•
$$\sigma_i^2 = \mathbb{V}[\lambda_i] < \infty$$

The gamma disribution parameters of the global rate Λ are :

$$A = \frac{m^2}{\sigma^2}$$
 et $B = \frac{m}{\sigma^2}$;

with

$$m = \sum_{i=1}^{C} m_i, \quad \sigma^2 = \sum_{i=1}^{C} \sigma_i^2$$

Inclusion process estimation

Expected duration

Theorem

Given:

- \tilde{N} a doubly stochastic process with rate $\Lambda = \sum_{i=1}^{C} \lambda_i$.
- The expected duration $\tilde{T} = \inf_{t \geq 0} {\{\tilde{N}(t) = N\}}$.

Conditionally to Λ , \tilde{T} follows a $\Gamma(N,\Lambda)$ distribution, therefore :

$$\mathbb{E}[\tilde{T}] = N \frac{B}{A-1}$$
 si $A > 1$, $\mathbb{E}[\tilde{T}] = +\infty$ si $0 < A \le 1$

- Cohort study
- Recruitment model
- Robustness investigations
 - Motivations
 - Issues
 - Simulations
 - Analysis of variance
 - Results

Motivations

Model hypothesis

- C must be large enough (> 20).
- The recruitment rates must be constant over time.

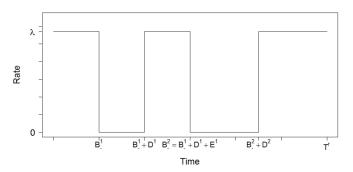
On real data, the rates are rarely constant.

 \hookrightarrow cost/precision of its consideration.

Simulation study helps for the decision. It involves 20 centers to recruit 1000 patients.

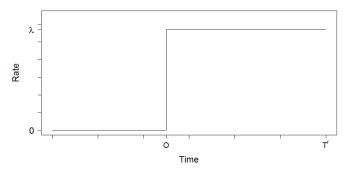
.

Scenario 1 : Breaks in recruitment process



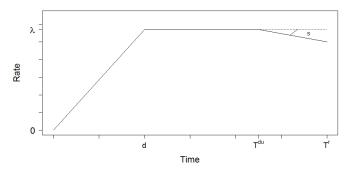
.

Scenario 2 : Unknown opening dates



15 / 27

Scenario 3: Rate changes over time



Inclusion process simulation

Data generation procedure:

- Generation of R global recruitment processes $\{N^r(t), 0 \le t \le T^r, 1 \le r \le R\}.$
- Given an interim time t₁:
 - Estimation of (α, β) from data collected on $[0, t_1]$.
 - ► Calculation of the expected duration of the trial $T_{t_1}^r$ at t_1 .
 - Measure of the performance of the model at interim time t₁ defined by :

$$E_{t_1}^r = \frac{T_{t_1}^r - T^r}{T^r}.$$

Robustness investigations

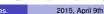
Processes generation

Simulation algorithm:

- Generation of the C rates \sim Gamma (α, β) .
- Generation of the C recruitment dynamic.
- Aggregation of the C recruitment dynamics.
- Identification of the duration of the trial.
- Calculation of the relative error at $t_1 = 78$ and $t_1 = 104$ weeks.

Addition algorithm:

- Fix the modality of the factor condidered in the scenario.
- Perform 100 runs as follows :
 - Begin the processes generation.
 - Generate the factor's perturbations for each centre.
 - Shorten the global recruitments to 1000 patients.
 - ► Calculate the relative error at interim time $t_1 = 78$ and $t_1 = 104$ weeks.
- Calculate the average relative error at interim time t₁.



Scenario 1: Breaks

Factors' modalities:

Number: 1, 2 and 3 breaks.

Simulation by an exponential random sampling.

Duration: 0, 2, 4, 8, 12, and 24 weeks.

Simulation by a multinomial random sampling with 7 different event probabilities.

Scenario 2 : Opening dates

Factor's modalities:

Values: 0, 1, 2, 4, 8, 12, 16, 20 and 24 weeks.

Simulation by a multinomial random sampling with 10 different event probabilities.

Robustness investigations 000000

Simulations

Scenario 3: Rate changes

Factors' modalities:

- Start-up: 0, 2, 4 and 8 weeks. Simulation by a multinomial random sampling with 5 different event probabilities.
- Drying-up start: 108 and 120 weeks. Equiprobably shared between all the simulations.
- Drying-up slope: 0, 0.05, 0.1 and 0.2. Simulation by a multinomial random sampling with 5 different event probabilities. 🖐 Inserm

Conducted analysis

The variable of interest is the relative error made defined as:

$$E = \frac{\hat{T} - T_{\text{real}}}{T_{\text{real}}}$$

For each scenario, the impact of the factors is studied by an ANOVA.

23 / 27

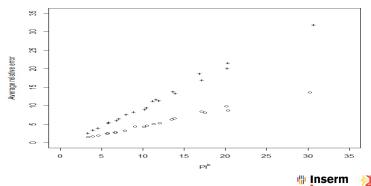
mary Cohort study Recruitment model Robustness investigations

OOOO
OOOO
OOOOO
OOOOO
OOOOOO
OOOOOO

D -----

Breaks

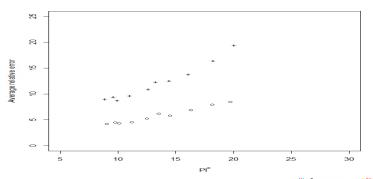
Average relative error the expected trial duration from data collected at $t_1 = 78$ weeks, '+' and $t_1 = 104$ weeks, 'o' as a function of PI^b.

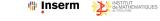


Dogulto

Opening dates

Average relative error the expected trial duration from data collected at $t_1 = 78$ weeks, '+' and $t_1 = 104$ weeks, 'o' as a function of PI o .

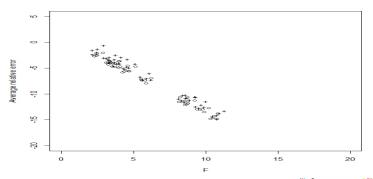


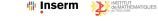


Dogult

Rate changes

Average relative error the expected trial duration from data collected at $t_1 = 78$ weeks, '+' and $t_1 = 104$ weeks, 'o' as a function of F.





0000

Resul

Thank you for your attention

This research has benefited from the help of IRESP during the call for proposals launched in 2012 in the setting of Cancer Plan 2009-2013.

