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What is recruitment period ?

Clinical trials is one of the main elements of the marketing authorization of a
new drug
Such a request has to follow a protocol specifying

Patients inclusion and exclusion criteria
Statistic analysis plan especially :

which test is used
what are the type I and type II risks
necessary sample size N

In order to recruit these N patients, several investigators centres are involved

Definition

The recruitment period is the duration between the initiation of the first of the C
investigator centres and the instant T (N) when the N patients are included.

N is fixed but T (N) is a random variable
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Motivation of those investigations

Why a model of recruitment period ?
The duration of the recruitment period is very hard to control
A clinical trial is expensive

$ 150.000.000 : Average out-of-pocket clinical cost for each new drug

Pharma-Companies need tools to be able to decide :
to overpass the targeted duration of the trial TR

stop the trial if it is too long

What a model of recruitment for ?
To develop tools for the study the feasibility of a clinical trial

based on the estimation of T (N) (punctually and by means of CI)

To Detect critical point in the recruitment
To define decision rules on the recruitment process to reach TR

based on the estimation of the recruitment rate
based on the estimation of the number of centre to open

Nicolas SAVY Workshop "Modélisation et simulation d’essais cliniques" 3 / 24



Workshop
"Modélisation et

simulation d’essais
cliniques"

Motivation of those investigations

Why a model of recruitment period ?
The duration of the recruitment period is very hard to control
A clinical trial is expensive

$ 150.000.000 : Average out-of-pocket clinical cost for each new drug

Pharma-Companies need tools to be able to decide :
to overpass the targeted duration of the trial TR

stop the trial if it is too long

What a model of recruitment for ?
To develop tools for the study the feasibility of a clinical trial

based on the estimation of T (N) (punctually and by means of CI)

To Detect critical point in the recruitment
To define decision rules on the recruitment process to reach TR

based on the estimation of the recruitment rate
based on the estimation of the number of centre to open

Nicolas SAVY Workshop "Modélisation et simulation d’essais cliniques" 3 / 24



Workshop
"Modélisation et

simulation d’essais
cliniques"

Motivation of those investigations

How to model the recruitment period ?
Analogy with queueing theory

Queueing theory Clinical research

Storage capacity ←→ target population or cohort
Server ←→ None

Exit process ←→ Drop-out patients
Entry process ←→ Recruitment

It is thus natural to model the recruitment period by means of Poisson
processes.
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The recruitment process model

Consider a multicentric trial involving C investigator centres

N : number of patients to be recruited

TR : expected duration of the trial

Ni : the recruitment process for centre i

=⇒ modelled by a PP of rate λi

N : the global recruitment process

=⇒ modelled by a PP of rate Λ =
∑
λi

T (N) : the recruitment duration

=⇒ is the stopping time inf {t ∈ R | N (t) ≥ N}

T1 an interim time

FT1 denote the history of the process up to T1
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The recruitment process model
Feasibility of the trial - Estimation of duration trial

Theorem

If λ is known (given by the investigator) then

The feasibility of the trial expresses by :
P [N (TR) ≥ N | FT1 ]

= 1 −
N−N1−1∑

k=0

1

k!

∫
RC

(∫ TR
T1

(x1 + . . . + xC )dt

)k
e
−
∫ T
T1

(x1+...+xC )dt C∏
i=1

p
T1
λ

(xi ) dxi (1)

The expected duration E [Tn] of the trial expresses by :

E
[

inf
t∈R
{N (t) ≥ N} | FT1

]
= N

∫
RC

pT1
λ (x1, . . . , xC )

x1 + . . . + xC
dx1 . . . dxC (2)

Involving pT1
λ the forward density of λ.

If λ is unknown then
λ̂ an estimation of λ from the data collected on [0,T1]

Replace λ by λ̂ in (1) and (2)
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The recruitment process model
On-going studies

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

Dots : Real data used to calibrate the model

Solid line : estimated number of recruited patients

Dotted line : Confidence Intervals
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The recruitment process model
Introduction of a empirical Bayesian model

Limit of this approach
Problem 1 : If p estimations are needed to describe Ni , C · p estimation are
needed to describe N

When C large, this is not relevant

Problem 2 : If centre i has not recruited before T1, then λ̂i = 0 and the model
does not authorize centre i to recruit later

Empirical Bayesian model

Ones considers
(λ1, . . . , λC)

is a sample of size C distributed by a certain distribution L(θ)

Instead of estimate C values of λ, one estimates θ
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The recruitment process model
Introduction of a empirical Bayesian model

Γ-Poisson model (Anisimov, Fedorov (2007))

Rates are Γ(α, β) distributed.
Distribution of T is explicit.

Π-Poisson model (Mijoule, Savy and Savy (2012))

Rates are Pareto-(xm, kp) distributed.
20% of centres recruit 80% of patients.
Distribution of T is no more explicit (Monte Carlo Simulation).

UΓ-Poisson model (Mijoule, Savy and Savy (2012))

Centre opening date are unknown and uniformly distributed
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Comparison of models on a real data
An application to real data

Objectives :
N = 610 patients
TR = 3 years
CR = 77 investigators centres

On-going studies : after 1 year, after 1.5 year and after 2 years

The estimated duration of the trial

The model Time 1 Time 1.5 Time 2
Constant intensity 3.30 2.63 2.44
Γ-Poisson model 3.31 2.63 2.44
Π-Poisson model 2.63 2.39 2.36
UΓ-Poisson model 2.60 2.34 2.36

Effective duration of the trial : 2.31 years
The end of the trial was predicted with an error of 15 days, 10 mouths before the
expected date
56 centres would be enough for ending in 3 years.
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CR = 77 investigators centres

On-going studies : after 1 year, after 1.5 year and after 2 years
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Verification of enrolment model
An application to real data (Anisimov, Fedorov (2007))

Real case study : n=629 patients, N=91 centres

Data : ~v = (v(0), v(1), v(2), ...) where v(j) is number of sites recruited j patients.

~v = (7, 11, 8, 8, 9, 8, 9, 7, 2, 4, 1, 3, 3, 4, 0, 0, 2, 1, 1, 2, 1, 0, 0, ..)

Real data : step-wise green line

Fitted mean number of sites recruited j pts (theoretical) : solid blue line

the mean + 2sd : dashed red line

Huge variation among sites, rates are modelled using a gamma distribution and fits
real data
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Improvement of patient recruitment’ models
Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

Drop-out at the inclusion

modelled by a probability pi in centre i

(p1, . . . , pC) sample having a beta distribution

Drop-out during the screening period

modelled si,j modelled by an exponential distribution of intensity θi

(θ1, . . . , θC) sample having a gamma distribution
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Improvement of patient recruitment’ models
Models with screening failures - Estimation

The recruitment dynamic is Γ(α, β)-Poisson.

Drop-out process is directed by p a constant or B(ψ1, ψ2).
T1 is an interim time.

τi the duration of activity of centre i up to T1 (assume τi ≥ R)
ni number of recruited patients for centre i up to T1
ri number of randomized patients for centre i up to T1

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data {(ni , ri , τi ), 1 ≤ i ≤ C}, the log-likelihood function writes :

L1(α, β, p) = L1,1(α, β) + L1,2(p)

Notice the separation of the log-likelihood function (processes independent)

L1,1 and L2,2 are explicit functions allowing optimisation.
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Improvement of patient recruitment’ models
Models with screening failures - Prediction

The recruitment dynamic is Γ(α, β)-Poisson. T1 is an interim time.

τi the duration of activity of centre i up to T1 (assume τi ≥ R)

ni number of recruited patients for centre i up to T1

ri number of randomized patients for centre i up to T1

νi number of patients entered in screening period for centre i in the interval
[T1 − R,T1]

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data {(ni , ri , τi , νi ), 1 ≤ i ≤ C}, the predicted process of the number of
randomized patients in centre i, {R̂i (t), t ≥ T1 + R}, expenses as

R̂i (t) = ri + Bin(νi , p̂) + Πp̂ λ̂i
(t − T1 − R).

p̂ =
( C∑

i=1

ni

)−1 C∑
i=1

ri and λ̂i = Ga(α̂ + ni , β̂ + τi )
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R̂i (t) = ri + Bin(νi , p̂i ) + Πp̂i λ̂i
(t − T1 − R).

p̂i = Beta(ψ̂1 + ki , ψ̂2 + ni − ki ), and λ̂i = Ga(α̂ + ni , β̂ + τi )
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Improvement of patient recruitment’ models
An additive model for cost

Consider a clinical trial such that for centre i ,

The inclusion process Ni is modelled by a PP(λi )

The probability for a patient to be screening failure is pi

Fi (t) : the number of screening failure at time t for center i
⇒ modelled by a PP(piλi )
⇒ cost proportional to Fi (t) : JiFi (t)

Ri (t) the number of randomized patients at time t for center i
⇒ modelled by a PP((1− pi )λi )
⇒ cost proportional to Ri (t) : KiRi (t)
⇒ cost depend of the duration of the follow-up :

∑
0≤T i

j ≤t gi (t ,T i
j )

gi is a triangular function gi (t, s) = 0 when t ≤ s
T i

j are randomization time of the patient j by centre i
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Improvement of patient recruitment’ models
An additive model for cost

In (Mijoule, Minois, Anisimov, Savy (forthcoming 2014)) ones considers the additive model for
the cost generated by centre i :

Ci (t) = JiFi (t) + KiRi (t) +
∑

0≤T i
j ≤t

gi (t ,T i
j ) + Fi + Gi t︸ ︷︷ ︸

independent of patients

The duration of the trial is the stopping time

T (N) = inf
t≥0
{R(t) ≥ N}

The total cost of the trial is thus C(T (N)) =
∑C

i=1 Ci (T (N))

In order to compute C = E [C(T (N))] we have to compute

E

[∫ T (N)

0
gi (T (N), s)dRi (s)

]
.

It is not possible to use martingale arguments to compute such an
expression
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Improvement of patient recruitment’ models
An additive model for cost

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

Assume (λi )1≤i≤C and (pi )1≤i≤C are known

=⇒ we have an explicit expression of C

Assume λi ∼ Γ(α, β) and pi ∼ B(ψ1, ψ2)

Consider an interim time T1, and consider that the i-th centre has
screened ni patients
randomized ri patients

Given (ni , ri ) the posterior distribution of
the rate is λi ∼ Γ(α+ ni , β + T1)

the probability of screening failure is pi ∼ B(ψ1 + ri , ψ2 + ni − ri )

=⇒ we can compute C by means of Monte Carlo simulation
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screened ni patients
randomized ri patients

Given (ni , ri ) the posterior distribution of
the rate is λi ∼ Γ(α+ ni , β + T1)

the probability of screening failure is pi ∼ B(ψ1 + ri , ψ2 + ni − ri )

=⇒ we can compute C by means of Monte Carlo simulation
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Improvement of patient recruitment’ models
An additive model for cost

Assume the closure of centre j , denote
T j (N) the duration of the trial without centre j
C j (t) the cost of the trial at time t without centre j

By means of Monte Carlo simulation we are able to evaluate the variation of
cost due to centre j closure :

∆Cj = E
[
C(T (N))− C j (T j (N))

]
Consider (∆Cj ,T j (N)) to decide on the closure of centre j .
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Decisions tools
Enrolment adjustment (Vladimir Anisimov)

Study design : Sites : 70, patient’s target : 400, enrolment duration :1 year
Sites initiated in 5-month period,
half of sites will be closed in two months before the end of enrolment

Initial design : to complete with 90% confidence.
Predictive area : mean and confidence bounds.
Interim analysis after 150 days : 88 pts recruited.
Real enrolment is slower than predicted.
Interim adjustment :
to complete with 90% confidence : 22 new sites to add
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Decisions tools
Site performance and risk-based monitoring (Vladimir Anisimov)

Modelling enrolment and hierarchic follow-up processes is a basic methodology
for forecasting future performance and developing different triggers :

Triggers for detecting outliers :

Late-start, inactive, high number of AE, low-enrolling, etc.

Predictive triggers (interim time analysis, data-driven) :

Predicting future behavior and alarm unusual sites

Create dynamic forecasts in future time intervals

Opportunities for optimal decision-making (sites, costs, risks).

Current triggers for RBM usually use assumptions of normality and detect unusual
behaviour within cohort using Mean and SD :

X > Mean(cohort) + K ∗ SD(cohort),K = 1, 2, 3

Many of variables describing trial operation are rather far from the normality
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Decisions tools
Site performance and risk-based monitoring (Vladimir Anisimov)

Histogram of the enrolment rate
(# of patients)/(site enrolment dura-
tion)

far from normal distribution

heavy tailed

Adequate model : Poisson mixed
with gamma

Histogram of time from Last Patient
Enrolled till current time

far from normal distribution

heavy tailed

Adequate model : Exponential
mixed with gamma or Pareto
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Decisions tools
Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

SID # of patients Enrolment duration

Prob Zero Prob <=1

1004 1 166

0.462 0.764

1006 0 268

0.716 0.926

1007 2 533

0.578 0.87

1009 1 190

0.485 0.785

1011 0 124

0.614 0.862

1012 1 595

0.705 0.933

1013 3 450

0.445 0.773

1014 5 488

0.325 0.66

1017 0 494

0.801 0.964

1022 3 486

0.465 0.791

1029 0 5

0.451 0.717

1201 2 424

0.525 0.832

1203 2 316

0.457 0.775

1901 25 180

0.0002 0.001

1904 3 347

0.381 0.71

1905 5 550

0.358 0.697

1906 10 534

0.151 0.413

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates
=⇒ Predictive probabilities for the next 4-month period

enrol no patients

Enrol at least one

Indicator of hight blueblow performance
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Decisions tools
Patients in trial/visits (Vladimir Anisimov)

Study design : Sites : 200, patient’s target : 800, enrolment duration :1 year
4 visits in total, each after 60 days, Follow-up period L=180 days

Predictive number of follow-up patients

Mean, Low and Upper 90% bounds for a Region with 100 sites

Predictive number of Visits No. 3

Mean, Low and Upper 90% bounds for a Region with 100 sites
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