Models for patients' recruitment

Workshop "Modélisation et simulation d'essais cliniques"

Bordeaux • Limoges • Montpellier • Nimes • Toulouse

Thuesday 09 April 2015

Nicolas SAVY

- Clinical trials is one of the main elements of the marketing authorization of a new drug
- Such a request has to follow a protocol specifying
 - Patients inclusion and exclusion criteria
 - Statistic analysis plan especially :
 - which test is used
 - what are the type I and type II risks
 - necessary sample size N
- In order to recruit these N patients, several investigators centres are involved

Definition

The **recruitment period** is the duration between the initiation of the first of the C investigator centres and the instant T(N) when the N patients are included.

- Clinical trials is one of the main elements of the marketing authorization of a new drug
- Such a request has to follow a protocol specifying
 - Patients inclusion and exclusion criteria
 - Statistic analysis plan especially :
 - which test is used
 - what are the type I and type II risks
 - necessary sample size N
- In order to recruit these N patients, several investigators centres are involved

Definition

The **recruitment period** is the duration between the initiation of the first of the C investigator centres and the instant T(N) when the N patients are included.

- Clinical trials is one of the main elements of the marketing authorization of a new drug
- Such a request has to follow a protocol specifying
 - · Patients inclusion and exclusion criteria
 - Statistic analysis plan especially :
 - which test is used
 - what are the type I and type II risks
 - necessary sample size N
- In order to recruit these N patients, several investigators centres are involved

Definition

The **recruitment period** is the duration between the initiation of the first of the C investigator centres and the instant T(N) when the N patients are included.

- Clinical trials is one of the main elements of the marketing authorization of a new drug
- Such a request has to follow a protocol specifying
 - · Patients inclusion and exclusion criteria
 - Statistic analysis plan especially :
 - which test is used
 - what are the type I and type II risks
 - necessary sample size N
- In order to recruit these N patients, several investigators centres are involved

Definition

The **recruitment period** is the duration between the initiation of the first of the C investigator centres and the instant T(N) when the N patients are included.

- Clinical trials is one of the main elements of the marketing authorization of a new drug
- Such a request has to follow a protocol specifying
 - Patients inclusion and exclusion criteria
 - Statistic analysis plan especially :
 - which test is used
 - what are the type I and type II risks
 - necessary sample size N
- In order to recruit these N patients, several investigators centres are involved

Definition

The **recruitment period** is the duration between the initiation of the first of the C investigator centres and the instant T(N) when the N patients are included.

• Why a model of recruitment period?

- The duration of the recruitment period is very hard to control
- A clinical trial is expensive
 - \$ 150.000.000 : Average out-of-pocket clinical cost for each new drug
- Pharma-Companies need tools to be able to decide :
 - to overpass the targeted duration of the trial T_R
 - stop the trial if it is too long

• What a model of recruitment for?

- To develop tools for the study the feasibility of a clinical trial
 - based on the estimation of T(N) (punctually and by means of CI)
- To Detect critical point in the recruitmen
- To define decision rules on the recruitment process to reach T_B
 - based on the estimation of the recruitment rate
 - based on the estimation of the number of centre to open

• Why a model of recruitment period?

- The duration of the recruitment period is very hard to control
- A clinical trial is expensive
 - \$ 150.000.000 : Average out-of-pocket clinical cost for each new drug
- Pharma-Companies need tools to be able to decide :
 - to overpass the targeted duration of the trial T_R
 - stop the trial if it is too long

What a model of recruitment for?

- To develop tools for the study the feasibility of a clinical trial
 - based on the estimation of T(N) (punctually and by means of CI)
- To Detect critical point in the recruitment
- ullet To define decision rules on the recruitment process to reach T_R
 - based on the estimation of the recruitment rate
 - based on the estimation of the number of centre to open

• How to model the recruitment period?

Qualities theory

Analogy with queueing theory

	Clinical research
\longleftrightarrow	target population or cohort
\longleftrightarrow	None
\longleftrightarrow	Drop-out patients
\longleftrightarrow	Recruitment
	\longleftrightarrow

Clinical recearch

 It is thus natural to model the recruitment period by means of Poisson processes.

- How to model the recruitment period?
 - Analogy with queueing theory

Queueing theory		Clinical research
Storage capacity	\longleftrightarrow	target population or cohort
Server	\longleftrightarrow	None
Exit process	\longleftrightarrow	Drop-out patients
Entry process	\longleftrightarrow	Recruitment

 It is thus natural to model the recruitment period by means of Poisson processes.

- N : number of patients to be recruited
- T_R: expected duration of the trial
- N_i: the recruitment process for centre i
 modelled by a PP of rate λ_i
- \mathcal{N} : the global recruitment process \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_l$
- T(N): the recruitment duration \implies is the stopping time $\inf \{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- \mathcal{N}_i : the recruitment process for centre i \Longrightarrow modelled by a PP of rate λ_i
- \mathcal{N} : the global recruitment process \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_l$
- T(N) : the recruitment duration \implies is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- \mathcal{N} : the global recruitment process \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_{l}$
- T(N): the recruitment duration \Longrightarrow is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- \mathcal{N}_i : the recruitment process for centre i
 - \Longrightarrow modelled by a PP of rate λ_i
- \longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration \implies is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- \mathcal{F}_{T_1} denote the history of the process up to T_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- N_i : the recruitment process for centre i
 - \implies modelled by a PP of rate λ_i
- \bullet $\,\,\mathcal{N}$: the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- \Rightarrow is the stopping time $\inf\{t \in \mathbb{R} \,|\, \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- N_i : the recruitment process for centre i
 - \implies modelled by a PP of rate λ_i
- N : the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration
 - \Longrightarrow is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- N_i : the recruitment process for centre i
 - \implies modelled by a PP of rate λ_i
- ullet : the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration
 - \Longrightarrow is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T_1 an interim time
- $\mathcal{F}_{\mathcal{T}_1}$ denote the history of the process up to \mathcal{T}_1

- N: number of patients to be recruited
- T_R: expected duration of the trial
- N_i : the recruitment process for centre i
 - \Longrightarrow modelled by a PP of rate λ_i
- N : the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration
 - \Longrightarrow is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T_1 an interim time
- \mathcal{F}_{T_1} denote the history of the process up to T_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- N_i : the recruitment process for centre i
 - \Longrightarrow modelled by a PP of rate λ_i
- \bullet \mathcal{N} : the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration
 - \Longrightarrow is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- \mathcal{F}_{T_1} denote the history of the process up to T_1

- N : number of patients to be recruited
- T_R: expected duration of the trial
- \mathcal{N}_i : the recruitment process for centre i
 - \Longrightarrow modelled by a PP of rate λ_i
- \bullet \mathcal{N} : the global recruitment process
 - \Longrightarrow modelled by a PP of rate $\Lambda = \sum \lambda_i$
- T(N): the recruitment duration
 - \implies is the stopping time inf $\{t \in \mathbb{R} \mid \mathcal{N}(t) \geq N\}$
- T₁ an interim time
- \mathcal{F}_{T_1} denote the history of the process up to T_1

• If λ is known (given by the investigator) then

The feasibility of the trial expresses by :

$$\mathbb{P}\left[\mathcal{N}(T_{R}) \geq N \mid \mathcal{F}_{T_{1}}\right] = 1 - \sum_{k=0}^{N-N_{1}-1} \frac{1}{k!} \int_{\mathbb{R}^{C}} \left(\int_{T_{1}}^{T_{R}} (x_{1} + \ldots + x_{C}) dt \right)^{k} e^{-\int_{T_{1}}^{T}} (x_{1} + \ldots + x_{C}) dt \prod_{i=1}^{C} \rho_{\lambda}^{T_{1}}(x_{i}) dx_{i}$$

The **expected duration** $\mathbb{E}\left[I_n \right]$ of the trial expresses by .

$$\mathbb{E}\left[\inf_{t\in\mathbb{R}}\left\{\mathcal{N}(t)\geq N\right\}\mid \mathcal{F}_{T_1}\right]=N\int_{\mathbb{R}^C}\frac{p_{\lambda}^{T_1}(x_1,\ldots,x_C)}{x_1+\ldots+x_C}dx_1\ldots dx_C$$
(2)

Involving $p_{\lambda}^{\prime 1}$ the forward density of λ .

- If λ is unknown then
 - $\hat{\lambda}$ an estimation of λ from the data collected on $[0, T_1]$
 - Replace λ by $\tilde{\lambda}$ in (1) and (2)

• If λ is known (given by the investigator) then

The feasibility of the trial expresses by :

$$\mathbb{P}\left[\mathcal{N}(T_{R}) \geq N \mid \mathcal{F}_{T_{1}}\right] \\
= 1 - \sum_{k=0}^{N-N_{1}-1} \frac{1}{k!} \int_{\mathbb{R}^{C}} \left(\int_{T_{1}}^{T_{R}} (x_{1} + \ldots + x_{C}) dt \right)^{k} e^{-\int_{T_{1}}^{T}} (x_{1} + \ldots + x_{C}) dt \prod_{i=1}^{C} \rho_{\lambda}^{T_{1}}(x_{i}) dx_{i} \tag{1}$$

The **expected duration** $\mathbb{E}\left[\mathsf{T}_{\mathsf{n}}
ight]$ of the trial expresses by .

$$\mathbb{E}\left[\inf_{t\in\mathbb{R}}\left\{\mathcal{N}(t)\geq N\right\}\mid \mathcal{F}_{T_1}\right]=N\int_{\mathbb{R}^C}\frac{\rho_{\lambda}^{T_1}(x_1,\ldots,x_C)}{x_1+\ldots+x_C}dx_1\ldots dx_C$$
(2)

Involving $p_{\lambda}^{I_1}$ the forward density of λ .

- If λ is unknown then
 - $\hat{\lambda}$ an estimation of λ from the data collected on $[0, T_1]$
 - Replace λ by $\hat{\lambda}$ in (1) and (2)

• If λ is known (given by the investigator) then

The **feasibility of the trial** expresses by :

$$\mathbb{P}\left[\mathcal{N}(T_{R}) \geq N \mid \mathcal{F}_{T_{1}}\right] \\
= 1 - \sum_{k=0}^{N-N_{1}-1} \frac{1}{k!} \int_{\mathbb{R}^{C}} \left(\int_{T_{1}}^{T_{R}} (x_{1} + \ldots + x_{C}) dt \right)^{k} e^{-\int_{T_{1}}^{T}} (x_{1} + \ldots + x_{C}) dt \prod_{i=1}^{C} \rho_{\lambda}^{T_{1}}(x_{i}) dx_{i} \tag{1}$$

The **expected duration** $\mathbb{E}[T_n]$ of the trial expresses by :

$$\mathbb{E}\left[\inf_{t\in\mathbb{R}}\left\{\mathcal{N}(t)\geq N\right\}\mid \mathcal{F}_{T_1}\right]=N\int_{\mathbb{R}^C}\frac{p_{\lambda}^{\prime_1}(x_1,\ldots,x_C)}{x_1+\ldots+x_C}dx_1\ldots dx_C\tag{2}$$

Involving $p_{\lambda}^{I_1}$ the forward density of λ .

- If λ is unknown then
 - $\hat{\lambda}$ an estimation of λ from the data collected on $[0, T_1]$
 - Replace λ by $\hat{\lambda}$ in (1) and (2)

• If λ is known (given by the investigator) then

The feasibility of the trial expresses by :

$$\mathbb{P}\left[\mathcal{N}(T_{R}) \geq N \mid \mathcal{F}_{T_{1}}\right] \\
= 1 - \sum_{k=0}^{N-N_{1}-1} \frac{1}{k!} \int_{\mathbb{R}^{C}} \left(\int_{T_{1}}^{T_{R}} (x_{1} + \dots + x_{C}) dt \right)^{k} e^{-\int_{T_{1}}^{T}} (x_{1} + \dots + x_{C}) dt \prod_{i=1}^{C} \rho_{\lambda}^{T_{1}}(x_{i}) dx_{i} \tag{1}$$

The **expected duration** $\mathbb{E}[T_n]$ of the trial expresses by :

$$\mathbb{E}\left[\inf_{t\in\mathbb{R}}\left\{\mathcal{N}(t)\geq N\right\}\mid \mathcal{F}_{T_1}\right]=N\int_{\mathbb{R}^C}\frac{p_{\lambda}^{T_1}(x_1,\ldots,x_C)}{x_1+\ldots+x_C}dx_1\ldots dx_C$$
(2)

Involving $\boldsymbol{p}_{\lambda}^{T_1}$ the forward density of λ .

- If λ is unknown then
 - $\hat{\lambda}$ an estimation of λ from the data collected on $[0, T_1]$
 - Replace λ by $\hat{\lambda}$ in (1) and (2)

ullet If λ is known (given by the investigator) then

The feasibility of the trial expresses by :

$$\mathbb{P}\left[\mathcal{N}(T_{R}) \geq N \mid \mathcal{F}_{T_{1}}\right] \\
= 1 - \sum_{k=0}^{N-N_{1}-1} \frac{1}{k!} \int_{\mathbb{R}^{C}} \left(\int_{T_{1}}^{T_{R}} (x_{1} + \dots + x_{C}) dt \right)^{k} e^{-\int_{T_{1}}^{T}} (x_{1} + \dots + x_{C}) dt \prod_{i=1}^{C} \rho_{\lambda}^{T_{1}}(x_{i}) dx_{i} \tag{1}$$

The **expected duration** $\mathbb{E}[T_n]$ of the trial expresses by :

$$\mathbb{E}\left[\inf_{t\in\mathbb{R}}\left\{\mathcal{N}(t)\geq N\right\}\mid \mathcal{F}_{T_1}\right]=N\int_{\mathbb{R}^C}\frac{\rho_{\lambda}^{\prime 1}(x_1,\ldots,x_C)}{x_1+\ldots+x_C}dx_1\ldots dx_C$$
 (2)

Involving $\mathbf{p}_{\lambda}^{T_1}$ the forward density of λ .

- If λ is unknown then
 - $\hat{\lambda}$ an estimation of λ from the data collected on $[0, T_1]$
 - Replace λ by $\hat{\lambda}$ in (1) and (2)

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

Dots: Real data used to calibrate the model

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

- Dots: Real data used to calibrate the model
- Solid line : estimated number of recruited patients
- Dotted line : Confidence Intervals

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

- Dots: Real data used to calibrate the model
- Solid line: estimated number of recruited patients
- Dotted line : Confidence Intervals

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

- Dots: Real data used to calibrate the model
- Solid line: estimated number of recruited patients
- Dotted line : Confidence Intervals

FIGURE: On going study at 1 year (on the left) and at 1.5 year (on the right)

- Dots: Real data used to calibrate the model
- Solid line: estimated number of recruited patients
- Dotted line : Confidence Intervals

Problem 1 : If p estimations are needed to describe \mathcal{N}_i , $C \cdot p$ estimation are needed to describe \mathcal{N}

When C large, this is not relevant

Problem 2 : If centre *i* has not recruited before T_1 , then $\hat{\lambda}_i = 0$ and the model does not authorize centre *i* to recruit later

Empirical Bayesian model

Ones considers

$$(\lambda_1,\ldots,\lambda_C)$$

is a sample of size C distributed by a certain distribution $\mathcal{L}(\theta)$

Instead of estimate C values of λ , one estimates 6

Problem 1 : If p estimations are needed to describe \mathcal{N}_i , $C \cdot p$ estimation are needed to describe \mathcal{N}

When C large, this is not relevant

Problem 2 : If centre *i* has not recruited before T_1 , then $\hat{\lambda}_i = 0$ and the model does not authorize centre *i* to recruit later

Empirical Bayesian model

Ones considers

$$(\lambda_1,\ldots,\lambda_C)$$

is a sample of size C distributed by a certain distribution $\mathcal{L}(\theta)$ Instead of estimate C values of λ , one estimates θ

Problem 1 : If p estimations are needed to describe \mathcal{N}_i , $C \cdot p$ estimation are needed to describe \mathcal{N}

When C large, this is not relevant

Problem 2 : If centre *i* has not recruited before T_1 , then $\hat{\lambda}_i = 0$ and the model does not authorize centre *i* to recruit later

Empirical Bayesian model

Ones considers

$$(\lambda_1,\ldots,\lambda_C)$$

is a sample of size C distributed by a certain distribution $\mathcal{L}(\theta)$ Instead of estimate C values of λ , one estimates θ

Problem 1 : If p estimations are needed to describe \mathcal{N}_i , $C \cdot p$ estimation are needed to describe \mathcal{N}

When C large, this is not relevant

Problem 2 : If centre *i* has not recruited before T_1 , then $\hat{\lambda}_i = 0$ and the model does not authorize centre *i* to recruit later

Empirical Bayesian model

Ones considers

$$(\lambda_1,\ldots,\lambda_C)$$

is a sample of size C distributed by a certain distribution $\mathcal{L}(\theta)$

Instead of estimate C values of λ , one estimates θ

- Γ-Poisson model (Anisimov, Fedorov (2007))
 - Rates are $\Gamma(\alpha, \beta)$ distributed.
 - Distribution of T is explicit.
- Π-Poisson model (Mijoule, Savy and Savy (2012))
 - Rates are Pareto-(x_m, k_p) distributed.
 - 20% of centres recruit 80% of patients.
 - Distribution of T is no more explicit (Monte Carlo Simulation).
- *U*Γ-Poisson model (Mijoule, Savy and Savy (2012))
 - Centre opening date are unknown and uniformly distributed

- Γ-Poisson model (Anisimov, Fedorov (2007))
 - Rates are $\Gamma(\alpha, \beta)$ distributed.
 - Distribution of T is explicit.
- Π-Poisson model (Mijoule, Savy and Savy (2012))
 - Rates are Pareto- (x_m, k_p) distributed.
 - 20% of centres recruit 80% of patients.
 - Distribution of *T* is no more explicit (Monte Carlo Simulation).
- *U*Γ-Poisson model (Mijoule, Savy and Savy (2012))
 - Centre opening date are unknown and uniformly distributed

- Γ-Poisson model (Anisimov, Fedorov (2007))
 - Rates are $\Gamma(\alpha, \beta)$ distributed.
 - Distribution of T is explicit.
- Π-Poisson model (Mijoule, Savy and Savy (2012))
 - Rates are Pareto- (x_m, k_p) distributed.
 - 20% of centres recruit 80% of patients.
 - Distribution of *T* is no more explicit (Monte Carlo Simulation).
- *U*Γ-Poisson model (Mijoule, Savy and Savy (2012))
 - Centre opening date are unknown and uniformly distributed

- N = 610 patients
- $T_R = 3$ years
- $C_R = 77$ investigators centres
- On-going studies: after 1 year, after 1.5 year and after 2 years
- The estimated duration of the tria

- Effective duration of the trial : 2.31 year
 - The end of the trial was predicted with an error of 15 days, 10 mouths before the
 expected date
 - 56 centres would be enough for ending in 3 years

- N = 610 patients
- $T_R = 3$ years
- $C_R = 77$ investigators centres
- On-going studies: after 1 year, after 1.5 year and after 2 years
- The estimated duration of the tria

- Effective duration of the trial : 2.31 years
 - The end of the trial was predicted with an error of 15 days, 10 mouths before the
 expected date
 - 56 centres would be enough for ending in 3 years

- N = 610 patients
- $T_R = 3$ years
- $C_R = 77$ investigators centres
- On-going studies: after 1 year, after 1.5 year and after 2 years
- The estimated duration of the trial

The model	Time 1	Time 1.5	Time 2
Constant intensity	3.30	2.63	2.44
Γ-Poisson model	3.31	2.63	2.44
Π-Poisson model	2.63	2.39	2.36
\mathcal{U} Г-Poisson model	2.60	2.34	2.36

- Effective duration of the trial: 2.31 years
 - The end of the trial was predicted with an error of 15 days, 10 mouths before the expected date
 - 56 centres would be enough for ending in 3 years

- N = 610 patients
- $T_B = 3$ years
- C_R = 77 investigators centres
- On-going studies: after 1 year, after 1.5 year and after 2 years
- The estimated duration of the trial

The model	Time 1	Time 1.5	Time 2
Constant intensity	3.30	2.63	2.44
Γ-Poisson model	3.31	2.63	2.44
Π-Poisson model	2.63	2.39	2.36
\mathcal{U} Γ-Poisson model	2.60	2.34	2.36

- Effective duration of the trial: 2.31 years
 - The end of the trial was predicted with an error of 15 days, 10 mouths before the
 expected date
 - 56 centres would be enough for ending in 3 years.

Verification of enrolment model

An application to real data (Anisimov, Fedorov (2007))

Real case study: n=629 patients, N=91 centres

Data: $\vec{v} = (v(0), v(1), v(2), ...)$ where v(j) is number of sites recruited j patients.

$$\vec{v} = (7,11,8,8,9,8,9,7,2,4,1,3,3,4,0,0,2,1,1,2,1,0,0,..)$$

- Real data : step-wise green line
- Fitted mean number of sites recruited j pts (theoretical) : solid blue line
- the mean + 2sd : dashed red line

Huge variation among sites, rates are modelled using a gamma distribution and **fits** real data

Verification of enrolment model

An application to real data (Anisimov, Fedorov (2007))

Real case study: n=629 patients, N=91 centres

Data : $\vec{v} = (v(0), v(1), v(2), ...)$ where v(j) is number of sites recruited j patients.

$$\vec{v} = (7, 11, 8, 8, 9, 8, 9, 7, 2, 4, 1, 3, 3, 4, 0, 0, 2, 1, 1, 2, 1, 0, 0, ..)$$

- Real data: step-wise green line
- Fitted mean number of sites recruited j pts (theoretical) : solid blue line
- the mean + 2sd : dashed red line

Huge variation among sites, rates are modelled using a gamma distribution and **fits** real data

An application to real data (Anisimov, Fedorov (2007))

Real case study: n=629 patients, N=91 centres

Data: $\vec{v} = (v(0), v(1), v(2), ...)$ where v(j) is number of sites recruited j patients.

$$\vec{v} = (7, 11, 8, 8, 9, 8, 9, 7, 2, 4, 1, 3, 3, 4, 0, 0, 2, 1, 1, 2, 1, 0, 0, ..)$$

- Real data : step-wise green line
- Fitted mean number of sites recruited / pts (theoretical): solid blue line
- the mean + 2sd : dashed red line

Huge variation among sites, rates are modelled using a gamma distribution and fits real data

Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

- Drop-out at the inclusion
 modelled by a probability p_i in centre i
 (p₁,...,p_C) sample having a beta distribution
- modelled $s_{i,j}$ modelled by an exponential distribution of intensity θ $(\theta_1, \ldots, \theta_C)$ sample having a gamma distribution

Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

Drop-out at the inclusion

modelled by a probability p_i in centre i

 (p_1, \ldots, p_C) sample having a beta distribution

Drop-out during the screening period

modelled $s_{i,j}$ modelled by an exponential distribution of intensity θ

Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

Drop-out at the inclusion

modelled by a probability p_i in centre i

 (p_1, \ldots, p_C) sample having a beta distribution

• Drop-out during the screening period modelled $s_{i,j}$ modelled by an exponential distribution of intensity θ $(\theta_1, \ldots, \theta_G)$ sample having a gamma distribution

Models with screening failures

Models investigated in (Anisimov, Mijoule, Savy (in progress))

Drop-out at the inclusion

modelled by a probability p_i in centre i

 (p_1, \ldots, p_C) sample having a beta distribution

Drop-out during the screening period

modelled $s_{i,j}$ modelled by an exponential distribution of intensity θ_i $(\theta_1, \ldots, \theta_C)$ sample having a gamma distribution

Models with screening failures - Estimation

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- \bullet T_1 is an interim time
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of recruited patients for centre i up to T
 - r_i number of **randomized patients** for centre i up to I_1

Models with screening failures - Estimation

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- T₁ is an interim time.
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of recruited patients for centre i up to T₁
 - r_i number of **randomized patients** for centre i up to T_1

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- T₁ is an interim time.
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of **recruited patients** for centre i up to T_1
 - r_i number of **randomized patients** for centre i up to T_1

$$\mathcal{L}_{1}(\alpha,\beta,p) = \mathcal{L}_{1,1}(\alpha,\beta) + \mathcal{L}_{1,2}(p)$$

- Notice the separation of the log-likelihood function (processes independent)
- $\mathcal{L}_{1,1}$ and $\mathcal{L}_{2,2}$ are explicit functions allowing optimisation.

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- T₁ is an interim time.
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of **recruited patients** for centre i up to T_1
 - r_i number of **randomized patients** for centre i up to T_1

$$\mathcal{L}_{1}(\alpha, \beta, \psi_{1}, \psi_{2}) = \mathcal{L}_{1,1}(\alpha, \beta) + \mathcal{L}_{1,2}(\psi_{1}, \psi_{2})$$

- Notice the separation of the log-likelihood function (processes independent)
- $\mathcal{L}_{1,1}$ and $\mathcal{L}_{2,2}$ are explicit functions allowing optimisation

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- T₁ is an interim time.
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of **recruited patients** for centre i up to T_1
 - r_i number of **randomized patients** for centre i up to T_1

$$\mathcal{L}_{1}(\alpha, \beta, \psi_{1}, \psi_{2}) = \mathcal{L}_{1,1}(\alpha, \beta) + \mathcal{L}_{1,2}(\psi_{1}, \psi_{2})$$

- Notice the separation of the log-likelihood function (processes independent)
- $\mathcal{L}_{1,1}$ and $\mathcal{L}_{2,2}$ are explicit functions allowing optimisation

- The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson.
- Drop-out process is directed by p a constant or $B(\psi_1, \psi_2)$.
- T₁ is an interim time.
 - τ_i the duration of activity of centre *i* up to T_1 (assume $\tau_i \geq R$)
 - n_i number of recruited patients for centre i up to T₁
 - r_i number of randomized patients for centre i up to T₁

$$\mathcal{L}_{1}(\alpha, \beta, \psi_{1}, \psi_{2}) = \mathcal{L}_{1,1}(\alpha, \beta) + \mathcal{L}_{1,2}(\psi_{1}, \psi_{2})$$

- Notice the separation of the log-likelihood function (processes independent)
- $\mathcal{L}_{1,1}$ and $\mathcal{L}_{2,2}$ are explicit functions allowing optimisation.

The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson. T_1 is an interim time.

- τ_i the duration of activity of centre i up to T_1 (assume $\tau_i \geq R$)
- n_i number of recruited patients for centre i up to T₁
- r_i number of **randomized patients** for centre i up to T_1
- ν_i number of **patients entered in screening period** for centre *i* in the interval $[T_1 R, T_1]$

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data $\{(n_i, r_i, \tau_i, \nu_i), 1 \le i \le C\}$, the predicted process of the number of randomized patients in centre i, $\{\widehat{\mathcal{R}}^i(t), t \ge T_1 + R\}$, expenses as

$$\widehat{\mathcal{R}}_i(t) = r_i + \operatorname{Bin}(\nu_i, \widehat{\rho}) + \Pi_{\widehat{\rho}\,\widehat{\lambda}_i}(t - T_1 - R).$$

$$\widehat{p} = \Big(\sum_{i=1}^{C} n_i\Big)^{-1} \sum_{i=1}^{C} r_i$$
 and $\widehat{\lambda}_i = \operatorname{Ga}(\widehat{\alpha} + n_i, \widehat{\beta} + \tau_i)$

The recruitment dynamic is $\Gamma(\alpha, \beta)$ -Poisson. T_1 is an interim time.

- τ_i the duration of activity of centre i up to T_1 (assume $\tau_i \geq R$)
- n_i number of recruited patients for centre i up to T₁
- r_i number of randomized patients for centre i up to T₁
- ν_i number of **patients entered in screening period** for centre *i* in the interval $[T_1 R, T_1]$

Theorem ((Anisimov, Mijoule, Savy (in progress)))

Given data $\{(n_i, r_i, \tau_i, \nu_i), 1 \le i \le C\}$, the predicted process of the number of randomized patients in centre i, $\{\widehat{\mathcal{R}}^i(t), t \ge T_1 + R\}$, expenses as

$$\widehat{\mathcal{R}}_i(t) = r_i + \operatorname{Bin}(\nu_i, \widehat{p}_i) + \Pi_{\widehat{p}_i, \widehat{\lambda}_i}(t - T_1 - R).$$

$$\widehat{p}_i = \text{Beta}(\widehat{\psi}_1 + k_i, \widehat{\psi}_2 + n_i - k_i), \quad \text{and} \quad \widehat{\lambda}_i = \text{Ga}(\widehat{\alpha} + n_i, \widehat{\beta} + \tau_i)$$

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is p

```
● \mathcal{F}_i(t): the number of screening failure at time t for center t
\Rightarrow \text{modelled by a } \mathbf{PP}(p_i \lambda_i)
\Rightarrow \text{cost proportional to } \mathcal{F}_i(t) : J_i \mathcal{F}_i(t)
```

- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i \Rightarrow modelled by a $\operatorname{PP}((1-p_i)\lambda_i)$ \Rightarrow cost proportional to $\mathcal{R}_i(t): K_i\mathcal{R}_i(t)$ \Rightarrow cost depend of the duration of the follow-up: $\sum_{0 \leq T_j' \leq t} g_i(t, T_j)$ g_i is a triangular function $g_i(t, s) = 0$ when $t \leq s$
 - \bullet i_j are randomization time of the patient j by centre

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is p_i

```
• \mathcal{F}_i(t): the number of screening failure at time t for center t
\Rightarrow \text{modelled by a } \mathbf{PP}(p_i\lambda_i)
\Rightarrow \text{cost proportional to } \mathcal{F}_i(t): J_i\mathcal{F}_i(t)
```

▶ $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i⇒ modelled by a $\mathsf{PP}((1-p_i)\lambda_i)$ ⇒ cost proportional to $\mathcal{R}_i(t): K_i\mathcal{R}_i(t)$ ⇒ cost depend of the duration of the follow-up: $\sum_{0 \leq T_i' \leq t} g_i(t, T_i')$ • g_i is a triangular function $g_i(t, s) = 0$ when $t \leq s$

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is p_i
- $\mathcal{F}_i(t)$: the number of screening failure at time t for center i \Rightarrow modelled by a $\mathsf{PP}(p_i\lambda_i)$ \Rightarrow cost proportional to $\mathcal{F}_i(t): J_i\mathcal{F}_i(t)$
- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i \Rightarrow modelled by a $\operatorname{PP}((1-p_i)\lambda_i)$ \Rightarrow cost proportional to $\mathcal{R}_i(t): \mathcal{K}_i\mathcal{R}_i(t)$ \Rightarrow cost depend of the duration of the follow-up: $\sum_{0 \le T_i' \le t} g_i(t, T_i')$ g_i is a triangular function $g_i(t, s) = 0$ when $t \le s$

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is p_i
- $\mathcal{F}_i(t)$: the number of screening failure at time t for center i \Rightarrow modelled by a $PP(p_i\lambda_i)$ \Rightarrow cost proportional to $\mathcal{F}_i(t): J_i\mathcal{F}_i(t)$
- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center
 - \Rightarrow modelled by a **PP**($(1 p_i)\lambda_i$)
 - \Rightarrow cost proportional to $\mathcal{R}_{:}(t): K_{:}\mathcal{R}_{:}(t)$
 - \Rightarrow cost depend of the duration of the follow-up: $\sum_{0 < \tau_i < t} g_i(t, T_i^i)$
 - g_i is a triangular function $g_i(t, s) = 0$ when $t \le s$
 - T_i are randomization time of the patient j by centre i

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is pi
- $\mathcal{F}_i(t)$: the number of screening failure at time t for center i \Rightarrow modelled by a $\mathbf{PP}(p_i\lambda_i)$ \Rightarrow cost proportional to $\mathcal{F}_i(t): J_i\mathcal{F}_i(t)$
- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i \Rightarrow modelled by a $PP((1-p_i)\lambda_i)$
 - \Rightarrow cost proportional to $\mathcal{R}_i(t)$: $K_i\mathcal{R}_i(t)$
 - cost depend of the duration of the follow-up : $\sum_{0 \leq T_i' \leq t} g_i(t, T_i')$
 - g_i is a triangular function $g_i(t, s) = 0$ when $t \le s$
 - T_i are randomization time of the patient j by centre.

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is pi
- F_i(t): the number of screening failure at time t for center i
 ⇒ modelled by a PP(p_iλ_i)
 ⇒ cost proportional to F_i(t): J_iF_i(t)
- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i
 - \Rightarrow modelled by a **PP**($(1 p_i)\lambda_i$)
 - \Rightarrow cost proportional to $\mathcal{R}_i(t)$: $K_i\mathcal{R}_i(t)$
 - \Rightarrow cost depend of the duration of the follow-up : $\sum_{0 < T_i^i < t} g_i(t, T_i^i)$
 - g_i is a triangular function $g_i(t, s) = 0$ when $t \le s$
 - T'_i are randomization time of the patient j by centre in

- The inclusion process \mathcal{N}_i is modelled by a $PP(\lambda_i)$
- The probability for a patient to be screening failure is pi
- $\mathcal{F}_i(t)$: the number of screening failure at time t for center i
 - \Rightarrow modelled by a **PP**($p_i\lambda_i$)
 - \Rightarrow cost proportional to $\mathcal{F}_i(t)$: $J_i\mathcal{F}_i(t)$
- $\mathcal{R}_i(t)$ the number of randomized patients at time t for center i
 - \Rightarrow modelled by a **PP**($(1 p_i)\lambda_i$)
 - \Rightarrow cost proportional to $\mathcal{R}_i(t)$: $K_i\mathcal{R}_i(t)$
 - \Rightarrow cost depend of the duration of the follow-up: $\sum_{0 < T_i^i < t} g_i(t, T_i^i)$
 - g_i is a triangular function $g_i(t, s) = 0$ when t < s
 - T_i^i are randomization time of the patient j by centre i

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \sum_{0 \leq T_i^i \leq t} g_i(t, T_i^i) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

The duration of the trial is the stopping time

$$T(N) = \inf_{t \ge 0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $\mathcal{C}(T(N)) = \sum_{i=1}^{\sigma} \mathcal{C}_i(T(N))$
- In order to compute $C = \mathbb{E}[C(T(N))]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)}g_i(T(N),s)d\mathcal{R}_i(s)\right]$$

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \int_0^t g_i(t,s) d\mathcal{R}_i(s) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

The duration of the trial is the stopping time

$$T(N) = \inf_{t>0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $C(T(N)) = \sum_{i=1}^{C} C_i(T(N))$
- In order to compute $\mathcal{C} = \mathbb{E}\left[\mathcal{C}(T(N))\right]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)} g_i(T(N),s) d\mathcal{R}_i(s)\right]$$

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \int_0^t g_i(t,s) d\mathcal{R}_i(s) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

• The duration of the trial is the stopping time

$$T(N) = \inf_{t \ge 0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $\mathcal{C}(T(N)) = \sum_{i=1}^{C} \mathcal{C}_{i}(T(N))$
- In order to compute $\mathcal{C} = \mathbb{E}\left[\mathcal{C}(T(N))\right]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)}g_i(T(N),s)d\mathcal{R}_i(s)\right]$$

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \int_0^t g_i(t,s) d\mathcal{R}_i(s) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

• The duration of the trial is the stopping time

$$T(N) = \inf_{t \ge 0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $\mathcal{C}(T(N)) = \sum_{i=1}^{C} \mathcal{C}_i(T(N))$
- In order to compute $\mathcal{C} = \mathbb{E}\left[\mathcal{C}(T(N))\right]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)}g_i(T(N),s)d\mathcal{R}_i(s)\right]$$

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \int_0^t g_i(t,s) d\mathcal{R}_i(s) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

• The duration of the trial is the stopping time

$$T(N) = \inf_{t \ge 0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $C(T(N)) = \sum_{i=1}^{C} C_i(T(N))$
- In order to compute $\mathcal{C} = \mathbb{E}\left[\mathcal{C}(T(N))\right]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)} g_i(T(N),s) d\mathcal{R}_i(s)\right].$$

$$\mathcal{C}_i(t) = J_i \mathcal{F}_i(t) + \mathcal{K}_i \mathcal{R}_i(t) + \int_0^t g_i(t,s) d\mathcal{R}_i(s) + \underbrace{F_i + G_i \, t}_{ ext{independent of patients}}$$

• The duration of the trial is the stopping time

$$T(N) = \inf_{t \ge 0} \left\{ \mathcal{R}(t) \ge N \right\}$$

- The total cost of the trial is thus $C(T(N)) = \sum_{i=1}^{C} C_i(T(N))$
- In order to compute $C = \mathbb{E}[C(T(N))]$ we have to compute

$$\mathbb{E}\left[\int_0^{T(N)} g_i(T(N),s) d\mathcal{R}_i(s)\right].$$

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \le i \le C}$ and $(p_i)_{1 \le i \le C}$ are known
 - \Longrightarrow we have an explicit expression of $\mathcal C$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time 1₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \implies we can compute ${\mathcal C}$ by means of Monte Carlo simulation

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \le i \le C}$ and $(p_i)_{1 \le i \le C}$ are known
 - \implies we have an explicit expression of $\mathcal C$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time T₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \implies we can compute ${\mathcal C}$ by means of Monte Carlo simulation

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \le i \le C}$ and $(p_i)_{1 \le i \le C}$ are known
 - \implies we have an explicit expression of ${\mathcal C}$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time T₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \implies we can compute ${\mathcal C}$ by means of Monte Carlo simulation

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \le i \le C}$ and $(p_i)_{1 \le i \le C}$ are known
 - \implies we have an explicit expression of ${\mathcal C}$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time T₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \implies we can compute ${\mathcal C}$ by means of Monte Carlo simulation

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \le i \le C}$ and $(p_i)_{1 \le i \le C}$ are known
 - \Longrightarrow we have an explicit expression of ${\mathcal C}$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time T₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \Longrightarrow we can compute ${\mathcal C}$ by means of Monte Carlo simulation

Theorem ((Mijoule, Minois, Anisimov, Savy (2014)))

- Assume $(\lambda_i)_{1 \leq i \leq C}$ and $(p_i)_{1 \leq i \leq C}$ are known
 - \implies we have an explicit expression of ${\mathcal C}$
- Assume $\lambda_i \sim \Gamma(\alpha, \beta)$ and $p_i \sim B(\psi_1, \psi_2)$
- Consider an interim time T₁, and consider that the i-th centre has
 - screened n_i patients
 - randomized r_i patients
- Given (n_i, r_i) the posterior distribution of
 - the rate is $\lambda_i \sim \Gamma(\alpha + n_i, \beta + T_1)$
 - the probability of screening failure is $p_i \sim B(\psi_1 + r_i, \psi_2 + n_i r_i)$
 - \implies we can compute $\mathcal C$ by means of Monte Carlo simulation

Assume the closure of centre j, denote

- $T^{j}(N)$ the duration of the trial without centre j
- $C^{j}(t)$ the cost of the trial at time t without centre j
- By means of Monte Carlo simulation we are able to evaluate the variation of cost due to centre *j* closure :

$$\Delta C_j = \mathbb{E}\left[C(T(N)) - C^j(T^j(N))\right]$$

• Consider $(\Delta C_j, T^j(N))$ to decide on the closure of centre j.

Assume the closure of centre *j*, denote

- $T^{j}(N)$ the duration of the trial without centre j
- $C^{j}(t)$ the cost of the trial at time t without centre j
- By means of Monte Carlo simulation we are able to evaluate the variation of cost due to centre j closure:

$$\Delta C_j = \mathbb{E}\left[C(T(N)) - C^j(T^j(N))\right]$$

• Consider $(\Delta C_j, T^j(N))$ to decide on the closure of centre j

Assume the closure of centre j, denote

- $T^{j}(N)$ the duration of the trial without centre j
- $C^{j}(t)$ the cost of the trial at time t without centre j
- By means of Monte Carlo simulation we are able to evaluate the variation of cost due to centre j closure:

$$\Delta C_j = \mathbb{E}\left[C(T(N)) - C^j(T^j(N))\right]$$

• Consider $(\Delta C_j, T^j(N))$ to decide on the closure of centre j.

Study design : Sites : 70, patient's target : 400, enrolment duration :1 year Sites initiated in 5-month period,

half of sites will be closed in two months before the end of enrolment

- Initial design: to complete with 90% confidence.
 Predictive area: mean and confidence bounds.
- Interim analysis after 150 days: 88 pts recruited.
 Real enrolment is slower than predicted.
- to complete with 90% confidence : 22 new sites to add

Study design : Sites : 70, patient's target : 400, enrolment duration :1 year Sites initiated in 5-month period,

half of sites will be closed in two months before the end of enrolment

- Initial design: to complete with 90% confidence.
 Predictive area: mean and confidence bounds.
- Interim analysis after 150 days: 88 pts recruited.
 Real enrolment is slower than predicted.
- to complete with 90% confidence : 22 new sites to add

Study design : Sites : 70, patient's target : 400, enrolment duration :1 year Sites initiated in 5-month period,

half of sites will be closed in two months before the end of enrolment

- Initial design: to complete with 90% confidence.
 Predictive area: mean and confidence bounds.
- Interim analysis after 150 days: 88 pts recruited.
 Real enrolment is slower than predicted.
- Interim adjustment:
 to complete with 90% confidence: 22 new sites to add

Modelling enrolment and **hierarchic follow-up** processes is a basic methodology for **forecasting future performance** and developing different **triggers**:

- Triggers for detecting outliers :
 - Late-start, inactive, high number of AE, low-enrolling, etc.
- Predictive triggers (interim time analysis, data-driven) :
 - Predicting future behavior and alarm unusual site
 - Create dynamic forecasts in future time intervals
 - Opportunities for optimal decision-making (sites, costs, risks)

Current triggers for RBM usually use assumptions of **normality** and detect unusual behaviour within cohort using Mean and SD:

$$X > Mean(cohort) + K * SD(cohort), K = 1, 2, 3$$

Modelling enrolment and **hierarchic follow-up** processes is a basic methodology for **forecasting future performance** and developing different **triggers**:

- Triggers for detecting outliers :
 - Late-start, inactive, high number of AE, low-enrolling, etc.
- Predictive triggers (interim time analysis, data-driven) :
 - Predicting future behavior and alarm unusual sites
 - Create dynamic forecasts in future time intervals
 - Opportunities for optimal decision-making (sites, costs, risks)

Current triggers for RBM usually use assumptions of **normality** and detect unusual behaviour within cohort using Mean and SD:

$$X > Mean(cohort) + K * SD(cohort), K = 1, 2, 3$$

Site performance and risk-based monitoring (Vladimir Anisimov)

Modelling enrolment and **hierarchic follow-up** processes is a basic methodology for **forecasting future performance** and developing different **triggers**:

- Triggers for detecting outliers :
 - Late-start, inactive, high number of AE, low-enrolling, etc.
- Predictive triggers (interim time analysis, data-driven) :

Predicting future behavior and alarm unusual sites

Create dynamic forecasts in future time intervals

Opportunities for optimal decision-making (sites, costs, risks).

Current triggers for RBM usually use assumptions of **normality** and detect unusual behaviour within cohort using Mean and SD :

$$X > Mean(cohort) + K * SD(cohort), K = 1, 2, 3$$

Site performance and risk-based monitoring (Vladimir Anisimov)

Modelling enrolment and **hierarchic follow-up** processes is a basic methodology for **forecasting future performance** and developing different **triggers**:

- Triggers for detecting outliers :
 - Late-start, inactive, high number of AE, low-enrolling, etc.
- Predictive triggers (interim time analysis, data-driven) :

Predicting future behavior and alarm unusual sites

Create dynamic forecasts in future time intervals

Opportunities for optimal decision-making (sites, costs, risks).

Current triggers for RBM usually use assumptions of **normality** and detect unusual behaviour within cohort using Mean and SD:

$$X > Mean(cohort) + K * SD(cohort), K = 1, 2, 3$$

Modelling enrolment and **hierarchic follow-up** processes is a basic methodology for **forecasting future performance** and developing different **triggers**:

- Triggers for detecting outliers :
 - Late-start, inactive, high number of AE, low-enrolling, etc.
- Predictive triggers (interim time analysis, data-driven) :

Predicting future behavior and alarm unusual sites

Create dynamic forecasts in future time intervals

Opportunities for optimal decision-making (sites, costs, risks).

Current triggers for RBM usually use assumptions of **normality** and detect unusual behaviour within cohort using Mean and SD :

$$X > Mean(cohort) + K * SD(cohort), K = 1, 2, 3$$

Site performance and risk-based monitoring (Vladimir Anisimov)

Histogram of the enrolment rate (# of patients)/(site enrolment duration)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- far from normal distribution
- neavy tailed
- Adequate model: Exponential mixed with gamma or Pareto

Site performance and risk-based monitoring (Vladimir Anisimov)

Histogram of the enrolment rate

(# of patients)/(site enrolment duration)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- tar from normal distribution
- heavy tailed
- Adequate model: Exponential mixed with gamma or Pareto

Site performance and risk-based monitoring (Vladimir Anisimov)

Histogram of the enrolment rate

(# of patients)/(site enrolment duration)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- far from normal distribution
- heavy tailed
- Adequate model: Exponential mixed with gamma or Pareto

Site performance and risk-based monitoring (Vladimir Anisimov)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- far from normal distribution
- heavy tailed
- Adequate model : Exponentia mixed with gamma or Pareto

Site performance and risk-based monitoring (Vladimir Anisimov)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- far from normal distribution
- heavy tailed
- Adequate model: Exponentia mixed with gamma or Pareto

Site performance and risk-based monitoring (Vladimir Anisimov)

- far from normal distribution
- heavy tailed
- Adequate model : Poisson mixed with gamma

- far from normal distribution
- heavy tailed
- Adequate model : Exponential mixed with gamma or Pareto

Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

OID	Hart and a street	Footon and owner	
SID	# of patients	Enrolment duration	
1004	1	166	
1006	0	268	
1007	2	533	
1009	1	190	
1011	0	124	
1012	1	595	
1013	3	450	
1014	5	488	
1017	0	494	
1022	3	486	
1029	0	5	
1201	2	424	
1203	2	316	
1901	25	180	
1904	3	347	
1905	5	550	
1906	10	534	

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates

Predictive probabilities for the next 4-month period

- enrol no patients
- Enrol at least one

Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

SID	# of patients	Enrolment duration	
1004	1	166	
1006	0	268	
1007	2	533	
1009	1	190	
1011	0	124	
1012	1	595	
1013	3	450	
1014	5	488	
1017	0	494	
1022	3	486	
1029	0	5	
1201	2	424	
1203	2	316	
1901	25	180	
1904	3	347	
1905	5	550	
1906	10	534	

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates

- → Predictive probabilities for the next 4-month period
 - enrol no patients
 - Enrol at least one

Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

# of patients	Enrolment duration	Prob Zero	
1	166	0.462	
0	268	0.716	
2	533	0.578	
1	190	0.485	
0	124	0.614	
1	595	0.705	
3	450	0.445	
5	488	0.325	
0	494	0.801	
3	486	0.465	
0	5	0.451	
2	424	0.525	
2	316	0.457	
25	180	0.0002	
3	347	0.381	
5	550	0.358	
10	534	0.151	
	2 1 0 1 3 5 0 3 0 2 2 2 25 3 5	1 166 0 268 2 533 1 190 0 124 1 595 3 450 5 488 0 494 3 486 0 5 2 424 2 316 25 180 3 347 5 550	1 166 0.462 0 268 0.716 2 533 0.578 1 190 0.485 0 124 0.614 1 595 0.705 3 450 0.445 5 488 0.325 0 494 0.801 3 486 0.465 0 5 0.451 2 424 0.525 2 316 0.457 25 180 0.002 3 347 0.381 5 550 0.358

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates

- ⇒ Predictive probabilities for the next 4-month period
 - enrol no patients
 - Enrol at least one

Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

SID	# of patients	Enrolment duration	Prob Zero	Prob <=1
1004	1	166	0.462	0.764
1006	0	268	0.716	0.926
1007	2	533	0.578	0.87
1009	1	190	0.485	0.785
1011	0	124	0.614	0.862
1012	1	595	0.705	0.933
1013	3	450	0.445	0.773
1014	5	488	0.325	0.66
1017	0	494	0.801	0.964
1022	3	486	0.465	0.791
1029	0	5	0.451	0.717
1201	2	424	0.525	0.832
1203	2	316	0.457	0.775
1901	25	180	0.0002	0.001
1904	3	347	0.381	0.71
1905	5	550	0.358	0.697
1906	10	534	0.151	0.413

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates

- ⇒ Predictive probabilities for the next 4-month period
 - enrol no patients
 - Enrol at least one

Data-driven predicting site performance (Vladimir Anisimov)

Interim analysis, real case study, 330 active sites.

SID	# of patients	Enrolment duration	Prob Zero	Prob <=1
1004	1	166	0.462	0.764
1006	0	268	0.716	0.926
1007	2	533	0.578	0.87
1009	1	190	0.485	0.785
1011	0	124	0.614	0.862
1012	1	595	0.705	0.933
1013	3	450	0.445	0.773
1014	5	488	0.325	0.66
1017	0	494	0.801	0.964
1022	3	486	0.465	0.791
1029	0	5	0.451	0.717
1201	2	424	0.525	0.832
1203	2	316	0.457	0.775
1901	25	180	0.0002	0.001
1904	3	347	0.381	0.71
1905	5	550	0.358	0.697
1906	10	534	0.151	0.413

Poisson-Gamma model of enrolment + Data-driven Bayesian re-estimation of rates

- ⇒ Predictive probabilities for the next 4-month period
 - enrol no patients
 - Enrol at least one

Patients in trial/visits (Vladimir Anisimov)

Study design : Sites : 200, patient's target : 800, enrolment duration :1 year 4 visits in total, each after 60 days, Follow-up period L=180 days

- Predictive number of follow-up patients
 Mean, Low and Upper 90% bounds for a Region with 100 sites
- Mean, Low and Upper 90% bounds for a Region with 100 site.

Study design : Sites : 200, patient's target : 800, enrolment duration :1 year 4 visits in total, each after 60 days, Follow-up period L=180 days

- Predictive number of follow-up patients

 Mean Law and Upper 200/ bounds for a Region with
- Mean, Low and Upper 90% bounds for a Region with 100 sites
- Mean, Low and Upper 90% bounds for a Region with 100 site

Study design : Sites : 200, patient's target : 800, enrolment duration :1 year 4 visits in total, each after 60 days, Follow-up period L=180 days

- Predictive number of follow-up patients
 Mean, Low and Upper 90% bounds for a Region with 100 sites
- Predictive number of Visits No. 3
 Mean, Low and Upper 90% bounds for a Region with 100 sites

Thank you for your attention...

- Nathan Minois
 INSERM 1027 Toulouse
- Vladimir Anisimov
 Quintiles UK
- Stéphanie Savy
 INSERM 1027 Toulouse

- Guillaume Mijoule
 Université Paris XI
- Sandrine Andrieu
 INSERM 1027 Toulouse
- Valérie Lauwers-Cances
 CHU Toulouse

This research has benefited from the help of IRESP during the call for proposals launched in 2012 in the setting of Cancer Plan 2009-2013

Thank you for your attention...

- Nathan Minois
 INSERM 1027 Toulouse
- Vladimir Anisimov
 Quintiles UK
- Stéphanie Savy
 INSERM 1027 Toulouse

- Guillaume Mijoule
 Université Paris XI
- Sandrine Andrieu
 INSERM 1027 Toulouse
- Valérie Lauwers-Cances
 CHU Toulouse

This research has benefited from the help of IRESP during the call for proposals launched in 2012 in the setting of Cancer Plan 2009-2013

Thank you for your attention...

- Nathan Minois
 INSERM 1027 Toulouse
- Vladimir Anisimov
 Quintiles UK
- Stéphanie Savy
 INSERM 1027 Toulouse

- Guillaume Mijoule
 Université Paris XI
- Sandrine Andrieu
 INSERM 1027 Toulouse
- Valérie Lauwers-Cances
 CHU Toulouse

This research has benefited from the help of IRESP during the call for proposals launched in 2012 in the setting of Cancer Plan 2009-2013