Colloque du club SMAC – Cancéropôle GSO « Statistiques et mathématiques appliquées au cancer » Modélisation et simulation d'essais cliniques

# AN INTRODUCTION TO MODELS AND METHODS IN PK-PD

#### **ADRIEN TESSIER**

adrien.tessier@inserm.fr

IAME, INSERM UMR 1137, University Paris Diderot, Sorbonne Paris Cité







- 1. Models in pharmacokinetics and pharmacodynamics
- 2. Statistical methods
  Pharmacometrics
- 3. Treatment individualization
- 4. Design optimization
- 5. Conclusion

MODELS IN
PHARMACOKINETICS
AND
PHARMACODYNAMICS



### PHARMACOKINETICS AND PHARMACODYNAMICS PHARMACOKINETICS & PHARMACODYNAMICS



### PHARMACOKINETICS AND PHARMACODYNAMICS PHARMACOKINETICS & PHARMACODYNAMICS

#### Pharmacokinetics (PK): « What the body does to the drug»

- Descriptive and quantitative study of the fate of substances in the body
  - drug concentrations over time

#### **Pharmacodynamics (PD):** « What the drug does to the body or the pathogen»

- > relationship between drug concentration and effect of the drug
- > the effect of the drug depends on its concentration on the site of action
- generally the blood is considered as a reflect of the drug concentration on the site of action
- > this is why it is critical to know what drives this concentration
- Variety of markers depending on the context
  - biological markers, pathogen concentration (viral load)
  - clinical markers (pain)
  - continuous, discrete, categorical

### TYPICAL DATA IN PHARMACOKINETICS AND PHARMACODYNAMICS

Warfarin: anticoagulant

#### 32 healthy volunteers

- PK data: plasma concentration after a unique oral administration
- objective: characterization of a median profile and the between-subjects variability



Holford, N. H. Clinical pharmacokinetics and pharmacodynamics of warfarin. Understanding the dose-effect relationship. *Clin. Pharmacokinet.* **11**, 483–504 (1986).

### ANALYSIS OF PHARMACOKINETICS AND PHARMACODYNAMICS

### Non-compartimental analysis





- area under the curve (AUC)
- maximum Concentration (C<sub>max</sub>)
- terminal half-life (t<sub>1/2</sub>)

#### Directly on the observed concentrations:

- few assumptions
- > 10 concentrations per subject
- calculation using trapezoidal method (linear or log-linear)

#### Modeling



Model the **whole course** of drug concentrations

The body is considered as a set of compartments

- homogeneous kinetics in a compartment
- transfers between the compartments
- requires to understand the main determinants of the drug PK

The transfers between the compartments are modeled using **differential equations**:

- parameters have a biological meaning
- models are non-linear

#### **Absorption**

Transfer of the drug from the site of administration to the blood

The route of administration will impact on:





- The fraction of the dose reaching in the circulation (F = bioavailability)
- The time to reach the circulation (absorption)

#### **Distribution**

Diffusion of the drug through the blood in the different organs and tissues

Volume of distribution (V): theoretical volume that a drug would have to occupy to provide the same concentration as it currently is in blood plasma



$$V = \frac{\text{Total amount of drug reaching the circulation}}{\text{Plasma concentration}} = \frac{A}{C}$$

#### **Elimination**

**Metabolism** (transformation of the drug) **Excretion** (elimination of the drug)





Generally the elimination is a first-order process

$$\rightarrow C(t) = C(0)e^{-kt}$$

#### **Elimination**

**Metabolism** (transformation of the drug) **Excretion** (elimination of the drug)

Generally the elimination is a first-order process

$$\Rightarrow \frac{dC}{dt} = -\mathbf{k} \cdot \mathbf{C}$$



 $\succ Cl = k.V$  the drug clearance : the volume of blood cleared per unit of time



### PHARMACOKINETICS AND PHARMACODYNAMICS PHARMACOKINETIC MODEL



#### **Differential equations = mass balance**

$$\frac{dA(1)}{dt} = -ka \times A(1)$$

$$A(1)_{t=0} = F \times Dose$$

$$\frac{dA(2)}{dt} = ka \times A(1) - k \times A(2)$$

$$A(2)_{t=0} = 0$$

$$k = \frac{CL}{V}$$

A(1): drug quantity in depot compartment (gut)

A(2): drug quantity in central compartment (measure compartment)

• observed concentration  $C(t) = \frac{A(2)}{V}$ 

#### **Analytical solution (Laplace transformation):**

$$C(t) = \frac{F \times Dose}{V} \frac{ka}{(ka - \frac{CL}{V})} \left(e^{-\frac{CL}{V}t} - e^{-kat}\right)$$

### PHARMACOKINETICS AND PHARMACODYNAMICS PHARMACOKINETIC MODEL

#### **Empirical models** Central Simplification of the ADME process > 1 to 3 compartments 100 -Concentration Central Peripheric $C(t) = Ae^{-\alpha t}$ $C(t) = Be^{-\beta t}$ $C(t) = Ce^{-\gamma t}$ Peripheric 1 Central Peripheric 2 60 120 180 240 Minutes since bolus injection

PK profile represented on log-scale

Number of decreasing slopes = number of compartments

### PHARMACOKINETICS AND PHARMACODYNAMICS

#### **Physiological models**

- PBPK: Physiologically Based PharmacoKinetics
  - > using biologic and in vitro data



- Direct or indirect relationship between drug concentrations and effect
- A too high drug exposure increases the risk of toxicity
- Purpose: find the best therapeutic window, i.e. a balance between drug efficacy and toxicity



#### **Direct response model**

Direct relationship between drug concentrations and effect

$$E(t) = E_0 \left( 1 + E_{max} \frac{C}{C + C_{50}} \right)$$

E(t): observed effect

 $E_0$ : response without treatment (baseline)

 $E_{max}$ : maximal effect

 $C_{50}$ : concentration to reach  $\frac{E_{max}}{2}$ 

C : drug concentrations





#### Indirect response model

Lag between the drug action and the effect observed on the marker

Warfarin: inhibition of vitamin K recycling

- > prevents formation of coagulation factors
- decrease of PCA (Prothrombin Complex Activity)



$$\frac{R_{\text{in}}}{1 - I_{\text{max}} \frac{C(t)^{\gamma}}{C_{50}^{\gamma} + C(t)^{\gamma}}}$$
 Effet

$$\frac{dE}{dt} = R_{in} \left( 1 - \frac{C(t)^{\gamma}}{C_{50}^{\gamma} + C(t)^{\gamma}} \right) - k_{out} E$$

$$E(t = 0) = \frac{R_{in}}{k_{out}}$$

 $R_{in}$ : Input (production of coagulation factors)

 $k_{out}$ : Loss (degradation of coagulation factors)

#### Viral kinetic model

• A basic model (Neumann et al, Science. 1998)



$$\frac{dT}{dt} = s - dT - \beta VT$$

$$\frac{dI}{dt} = \beta VT - \delta I$$

$$\frac{dV}{dt} = (1 - \varepsilon)pI - cV$$



s: production rate of target cells

d: death rate of target cells

 $\beta$ : infection rate

p: production rate per infected cell

c: clearance rate of free virus

 $\delta$ : loss rate of infected cells

ε: treatment effectiveness

#### MODELS IN PHARMACOKINETICS AND PHARMACODYNAMICS

### PHARMACODYNAMIC MODEL

#### **Tumor growth inhibition model**



$$\frac{dC}{dt} = -KDE \times C$$

$$\frac{dP}{dt} = \lambda_p \times P\left(1 - \frac{P^*}{K}\right) + k_{Q_PP} \times Q_P - k_{PQ} \times P - \gamma_P \times C \times KDE \times P$$

$$\frac{dQ}{dt} = k_{PQ}P - \gamma_Q \times C \times KDE \times Q$$

$$\frac{dQ_P}{dt} = \gamma_Q \times C \times KDE \times Q - k_{Q_PP}Q_P - \delta_{QP} \times Q_P$$

$$P^* = P + Q + Q_P$$



#### **Drug-induced thrombocytopenia model**



$$\frac{dPROL}{dt} = k_{prol} \cdot (1 - E_{drug}) \cdot FBP \cdot PROL - k_{tr} \cdot FBM \cdot P1$$

$$\frac{dTr \ 1}{dt} = k_{tr} \cdot FBM \cdot PROL - k_{tr} \cdot FBM \cdot Tr \ 1$$

$$\frac{dTr \ 2}{dt} = k_{tr} \cdot FBM \cdot Tr \ 1 - k_{tr} \cdot FBM \cdot Tr \ 2$$

$$\frac{dTr \ 3}{dt} = k_{tr} \cdot FBM \cdot Tr \ 2 - k_{tr} \cdot FBM \cdot Tr \ 3$$

$$\frac{dCIRC}{dt} = k_{tr} \cdot FBM \cdot Tr \ 3 - k_{El} \cdot CIRC$$

$$E_{drug} = \frac{IMAX \cdot Conc}{IC_{50} + Conc}$$

$$FBP = \left(\frac{BASE}{CIRC}\right)^{\gamma} \quad FBM = \left(\frac{BASE}{CIRC}\right)^{\delta}$$

$$If \ solid \ tumour \ patients : BASE = BASE_{0 \ EV} - \frac{IMAT \cdot t}{IT_{50} + t}$$





### INTERESTS FOR MODELING

- Quantitative summary of the evolution of profile across time through physiological parameters
- Better predictive / simulation ability for other doses, special populations...
- Analysis of all longitudinal data in clinical trials (not only the endpoint): more powerful to detect drug effect and less bias through the inclusion of dropouts
- Test of hypothesis on effect mechanism of drugs
- Comparison of groups of patients through statistical comparison of parameters
- Statistical issues: nonlinear models, high interindividual variability
  - → Nonlinear mixed effects models for parameters estimation

## STATICAL METHODS

### **PHARMACOMETRICS**



### PHARMACOMETRICS

#### Science of quantitative pharmacology

- Quantify the pharmacologic activity of a drug and its variability between subjects and/or between occasions
  - two-stage method
  - population approach
    - main tool : nonlinear mixed effects models

### TWO - STAGES METHOD



From Steimer (1992): « Population models and methods, with emphasis on pharmacokinetics », in M. Rowland and L. Aarons (eds), *New strategies in drug development and clinical evaluation, the population approach* 

#### 1. Individual nonlinear regression

- Estimation of individual parameters: require a large number of samples per subject
- 2. Statistical summary (mean, variance)
  - Overestimate the variability (do not distinguish the variability between individuals of the residual error)

#### 3. Relations with covariates (gender, weight...)

### PHARMACOMETRICS POPULATION APPROACH



#### Nonlinear mixed effects models

- Simultaneous analysis of all observations
  - reduce number of samples per subject
- Estimation of mean parameters and their variabilities (without bias)
- Identification of covariates influencing the variability
  - determination of relationships between covariates and model parameters

## PHARMACOMETRICS POPULATION APPROACH



#### Nonlinear mixed effects models

- Based on several statistical and mechanistic hypotheses
  - structural model (nonlinear function)
  - variability model
  - > residual error model

#### **Notations**

Concentration  $y_{ij}$  for subject i observed at time  $t_{ij}$ :

$$y_{ij} = f(\theta_i, t_{ij}) + \varepsilon_{ij}$$

f: structural model

- The same for all subjects
  - > One equations system for all subjects
- a specific vector of parameters  $\theta_i = \{ka, V_1, Q, V_2, CL\}$  for subject i
  - $\triangleright \theta_i$ : individual parameters



 $\varepsilon_{ij}$ : residual error

#### **Notations**

 $\theta_i$ : individual parameters

$$\theta_i = \mu e^{\eta_i}$$

 $\mu$ : fixed effect (mean parameter)

Estimated from observations of all subjects

Mean profile predicted by integrating the mean values of parameters in

the model  $(\{ka, V_1, Q, V_2, CL\})$ 



#### **Notations**

 $\theta_i$ : individual parameters

$$\theta_i = \mu e^{\eta_i}$$

 $\mu$ : fixed effect (mean parameter)

 $\eta_i$ : random effects

• hypothesis: we assume the distribution of random effects is known

$$\eta_i \sim N(0, \omega^2)$$

- $\triangleright \theta_i = \mu + \eta_i, \theta_i$  follow a normal distribution
- $> \theta_i = \mu e^{\eta_i}, \theta_i$  follow a log-normal distribution ( $\theta_i > 0$ )

#### **Notations**

 $\theta_i$ : individual parameters

$$\theta_i = \mu e^{\eta_i}$$

 $\mu$ : fixed effect (mean parameter)

 $\eta_i$ : random effects

interindividual variability





### PHARMACOMETRICS

### **NONLINEAR MIXED EFFECTS MODELS**

#### **Notations**

$$y_{ij} = f(\theta_i, t_{ij}) + \varepsilon_{ij}$$

 $\theta_i$ : individual parameters

$$\theta_i = \mu e^{\eta_i}$$

 $\mu$ : fixed effect (mean parameter)

 $\eta_i$ : random effects

 $\varepsilon_{ii}$ : residual error

• hypothesis :  $\varepsilon_{ij} \sim N(0, \sigma^2)$ 





#### **Notations**

 $\theta_i$ : individual parameters

$$\theta_i = \mu e^{\eta_i}$$

μ: fixed effect (mean parameter)  $η_i$ : random effects,  $η_i \sim N(0, ω^2)$ 

 $\varepsilon_{ij}$ : residual error,  $\varepsilon_{ij} \sim N(0, \sigma^2)$ 

Distinction between interindividual variability and residual error

Parameters to estimate:

$$\{\mu, \boldsymbol{\omega}^2, \boldsymbol{\sigma}^2\}$$

#### Intraindividual variability

 $\kappa_i$ : interoccasion variability

- data collected at different periods
  - > Different visits
  - Changing in treatment schedule, trial arm

$$\theta_i = \mu e^{\eta_i + \kappa_i}$$



#### **Covariates**

- Physiological, biological, pharmacological specificities...
- Explain the sources of parameters variability
- Continuous covariates  $CL_i = \mu + \beta \times CLCr_i + \eta_i$



Binary covariates

$$CL_{i,homme} = \mu_1 + \eta_i$$
  
 $CL_{i,femme} = \mu_2 + \eta_i$ 



#### **Estimation**

$$C(t) = \frac{F \times Dose}{V} \frac{ka}{(ka - \frac{CL}{V})} \left(e^{-\frac{CL}{V}t} - e^{-kat}\right)$$

$$\theta_{F} = \mu_{F}e^{\eta_{F_{i}}}, \eta_{F_{i}} \sim N(0, \omega^{2}_{F})$$

$$\theta_{ka} = \mu_{ka}e^{\eta_{ka_{i}}}, \eta_{ka_{i}} \sim N(0, \omega^{2}_{ka})$$

$$\theta_{V} = \mu_{V}e^{\eta_{V_{i}}}, \eta_{V_{i}} \sim N(0, \omega^{2}_{V})$$

$$\theta_{CL} = \mu_{CL}e^{\eta_{CL_{i}}}, \eta_{CL_{i}} \sim N(0, \omega^{2}_{CL})$$

$$\epsilon_{ij} \sim N(0, \sigma^{2})$$

Estimation of fixed and random effects?



Steimer JL, Vozeh S, Racine Poon A, Holford N, O'Neil R: The population approach: rationale, methods and applications in clinical pharmacology and drug development. *In P.G. Welling & L. Balant (eds), Handbook of experimental pharmacology (vol 110 : Pharmacokinetics of drugs, Berlin : SpringVerlag, 1994, 405-451)* 



- 1. Analysis of all observations
  - Estimation of population parameters ( $\mu$ ,  $\omega^2$ ,  $\sigma^2$ )
    - > maximum likelihood
    - > prior distribution



### **PHARMACOMETRICS**

### **NONLINEAR MIXED EFFECTS MODELS**



### Likelihood

$$L(\theta, y) = p(y/\theta)$$

- Probability to observe y knowing  $\theta$
- Maximum likelihood : estimate the parameters  $\theta$  for model predictions are as close as possible to the observed data

### Issue

- *f* is nonlinear in its parameters
  - no analitycal expression of the likelihood
  - required to approximate the likelihood
    - estimation algorithms

### First estimation method

## NON linear Mixed Effects Model L. Sheiner & S. Beal, UCSF

### 1972: Concept and FO method

Sheiner, L. B., Rosenberg, B. & Melmon, K. L. Modelling of individual pharmacokinetics for computer-aided drug dosage. *Comput. Biomed. Res. Int. J.* **5**, 411–459 (1972).

### • 1977: First publication

Sheiner, L. B., Rosenberg, B. & Marathe, V. V. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. *J. Pharmacokinet. Biopharm.* **5,** 445–479 (1977).

#### • 1980: NONMEM - first software

Beal, S. L. & Sheiner, L. B. The NONMEM system. *Am Stat.* **34,**118-119 (1980). Beal, S. L. & Sheiner, L. B. Estimating population kinetics. *Crit. Rev. Biomed. Eng.* **8,** 195–222 (1982).

### **Development of estimation methods**



Pillai, G. C., Mentré, F. & Steimer, J.-L. Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science. *J. Pharmacokinet. Pharmacodyn.* **32**, 161–183 (2005).

## PHARMACOMETRICS NONLINEAR MIXED EFFECTS MODELS

### Estimation softwares for nonlinear mixed effects models

| Tableau 2 – Logiciels de population les plus utilisés |                                           |           |           |
|-------------------------------------------------------|-------------------------------------------|-----------|-----------|
| Logiciel                                              | Algorithmes disponibles                   | Туре      | Interface |
| Monolix                                               | SAEM                                      | Mixte (1) | Oui       |
| NONMEM                                                | FO, FOCE, Laplace, SAEM, Bayes            | Payant    | Non       |
| Phoenix                                               | FOCE                                      | Payant    | Oui       |
| R (librairies)                                        | nlme, Ime4 (FOCE, Laplace), saemix (SAEM) | Gratuit   | Non (2)   |
| SAS                                                   | NLMIXED (FO, FOCE, AGQ)                   | Payant    | Oui       |
| WinBugs                                               | Bayes                                     | Gratuit   | Non       |

<sup>(1)</sup> Licence gratuite pour les universitaires et étudiants.

<sup>(2)</sup> R n'a pas d'interface graphique spécifique mais des outils comme Rstudio peuvent être utilisés pour le faire tourner.

### **Model development**

Find the model which describes adequately the data, by determining:

- Structural model
- Variability model (inter and intraindividual)
- Residual error model
- Covariates

No consensus on building method

- Development of a basic model without covariates
- Analysis and integration of significant covariates in model

### **Model selection**

Parsimony: the model which best describe the data with the lower number of parameters

### Statistical criteria:

- $-2LL = -2 \log(likelihood)$ 
  - > approximate of likelihood to minimize
- Other criteria: AIC, BIC

### Likelihood Ratio Test (LRT)

- Reduced model (p parameters) :  $-2LL_{reduced}$
- Full model (p + q parameters) :  $-2LL_{full}$
- Under  $H_0: -2LL_{reduced} -2LL_{full} \sim \chi^2 \ (ddl = q)$



### **Model evaluation**

**Estimation precision** 

$$RSE \text{ (\%)} = \frac{Standard Error}{Parameter estimate}$$

### Graphical evaluation

- Comparison of model predictions to observed data
- Residuals evaluation
- Simulations based evaluation
  - VPC (Visual Predictive Check)
  - NPDE (Normalized prediction distribution errors)

### Numerical evaluation

- data splitting
- bootstrap
- Jack-knife

# TREATMENT INDIVIDUALIZATION



PHOTOGRAPH BY ADAM VOORHES

## THERAPEUTIC INTERESTS

### Same diagnosis, same prescription









Administer the right dose for each patient depending on its features and characteristics of the drug (therapeutic range)

#### Methods

- a priori adaptation
- a posteriori adaptation through Bayesian method

## A PRIORI ADAPTATION

Model: structure, variability, covariates

Patient: no PK data, only subject characteristics (age, weight, biology...)

- Predict the patient PK parameters using model and covariates values
  - Predict concentrations for this subject
  - Limited when variability is high or with a limited number of covariates in model

Prediction of carboplatin clearance :

4 covariates associated to carboplatin clearance

$$\textit{CL} = \textbf{0.134} \times \textit{weight} + \frac{\textbf{218} \times \textit{weight} \times (\textbf{1} - \textbf{0.00457} \times \textit{age}) \times (\textbf{1} - \textbf{0.314} \times \textit{sex})}{\textit{serum creatinine}}$$

AUC = Dose/CL: determine the dose to reach the targeted l'AUC?

Chatelut, E. et al. Prediction of carboplatin clearance from standard morphological and biological patient characteristics. J. Natl. Cancer Inst. 87, 573–580 (1995).

## A POSTERIORI ADAPTATION: BAYESIAN APPROACH

### $prior \propto data = posterior distribution$

• Prior: population model parameters (mean  $\mu$  and variance  $\omega^2$ )



- Posterior distribution: individual PK parameters
  - Prediction of next concentrations
    - determine the next dose
    - periodic evaluation to optimize dose on intraindividual variability

# DESIGN OPTIMIZATION



## DESIGN OPTIMIZATION DESIGN FOR POPULATION PK-PD ANALYSIS

### Importance of the choice

- Influence the precision of parameters estimation
- Poor design can lead to unreliable studies
- All the more important in pediatric studies
  - > severe limitations on the number of samples to be taken
  - > ethical and physiological reasons

### Problem: choice of population design

- number of patients?
- number of sampling times?
- sampling times?

Recommendations on design in the FDA guidance

## EVALUATION OF POPULATION DESIGN

### Two approaches

- simulation studies: cumbersome!
- methodology based on the Fisher Information matrix (FIM) in NLMEM

### Expression of MF for population PK

- complex
- based on a linearisation of the model around the fixed effects (Mentré, Mallet & Baccar. Biometrika, 1997) (Retout, Mentré & Bruno. Stat Med, 2002)

### Principle

- to compute M<sub>F</sub> and its inverse for each population design to be evaluated
  - from the population model
  - from a priori value of the population parameters
- expected standard errors on the parameters = root mean square of the diagonal of  $M_F^{-1}$

## OPTIMIZATION OF POPULATION DESIGN

### Design comparisons

- objective: to have the "smallest" M<sub>F</sub>-1 or the "largest" M<sub>F</sub>
- criteria for matrix comparison
  - > D-optimality, the most usual one: det (M<sub>F</sub>)

### Optimization of exact or statistical designs

- Maximization of det(M<sub>F</sub>)
  - > Find the best design for a given value of the population parameters
- Optimization of both the sampling times and the group structure
  - > Fedorov-Wynn (specific algorithm), Simplex algorithm..

## OPTIMIZATION OF POPULATION DESIGN

PFIM software www.pfim.biostat.fr

```
*************************** OPTIMISED DESIGN **********
Optimised population design:
Sample times for response: A
            prot.opti subjects.opti Subjects
1 c(0.5, 12, 24, 144) 0.6768466 21.65909
2 c(0.5, 24, 120, 144) 0.3231534 10.34091
Sample times for response: B
            prot.opti subjects.opti Subjects
1 c(0.5, 12, 24, 144) 0.6768466 21.65909
2 c(0.5, 24, 120, 144) 0.3231534 10.34091
Associated optimised criterion: 580.1989
     ----- Fixed Effects Parameters
             StdError
   1.600 0.263353095 16.459568 %
   0.133 0.006533504 4.912409 %
    7.950 0.322403263 4.055387 %
Rin 5.410 0.437881955 8.093936 %
C50 1.200 0.052867047 4.405587 %
Kout 0.056 0.001737771 3.103163 %
            ----- Variance of Random Effects ------
              StdError
     Omega
   0.7010 0.206505767 29.45874 %
   0.0634 0.017561742 27.69991 %
    0.0206 0.012226360 59.35126 %
Rin 0.1900 0.050298864 26.47309
C50 0.0129 0.016460059 127.59736 %
Kout 0.0167 0.007665362 45.90037 %
               ----- Variance of residual error ------
           SIG StdError
sig.slope& 0.20 0.0216894 10.84470 %
sig.interB 3.88 0.4677695 12.05591 %
```



- → Two groups with 22 and 10 subjects
- → Total of 256 sampling times

## CONCLUSION



## INTERESTS FOR PHARMACOMETRICS

- Empirical or mechanistic description of data and PK-PD relationships
  - Now common method in the drug authorization application files
- Analysis of pharmacodynamic data (E<sub>max</sub>, EC<sub>50</sub>)
- Analysis of sparse data (phase II and phase III)
- Estimation of variability and sources of variability (covariates)
- Prediction: other dosage schemes (schedule, dose, administration route...),
   sub-population (children, renal impairments...)
- Planning of next studies (clinical trial simulations, optimal design)
- Treatment individualization

### **Model-Based Drug Development**

Guiding the drugs development through the use of pharmacometrics



## CONCLUSION

- Increasing role of quantitative analysis of data through models in drugs evaluation
- Cooperative work
  - biologists, pharmacologists, clinicians
  - > engineers, mathematicians, statisticians

· Pharmacometricians

Many open methodological problems...