

Heterogeneity among early-stage K-Ras driven lung adenocarcinoma predicts tumour aggressiveness and identifies novel therapeutic targets

Canceropole 17.10.14

Ras Mutations in Human Tumors (COSMIC, 2013)

Tissue/Organ	K-Ras	N-Ras	H-Ras
TOTAL: Samples tested	130,500	56,300	33,500
TOTAL: Percentage	22%	6%	3%
Pancreas	58%	1%	0%
Intestine/Colon	28%	2%	<1%
Billiary tract	26%	2%	1%
Lung	23%	1%	1%
Ovary	12%	1%	0%
Endometrium	15%	3%	<1%
All Others	0-7%	0-15%	0-12%

Targeting the cell cycle

C-Raf ^{LmLD468A/LmLD468A};*Tg.hUBC-CreERT2* ^{+/T} show no phenotype after 6 months of Tamoxifen diet

Overall MAPK signalling is essential for mouse homeostasis and individual mediators are functionally redundant; their function is specialized in K-Ras^{G12V}-driven NSCLC.

 C-Raf is a valuable therapeutic target for K-Ras^{G12V}-driven NSCLC treatment with potentially low systemic toxicity.

Inhibition of C-Raf catallytic activity induces regression of advanced K-Ras^{G12V}-driven NSCLC.

	ARTICLE biotechnology Assessing therapeutic responses in <i>Kras</i> mutant cancers using genetically engineered mouse models	S	Chronic cisplatin treatme enhanced damage repair a progression in a mouse m of lung cancer	ent promotes and tumor odel
Exp Dual Block of No	perimental Therapeutics, Molecular Targets, and Chemical Biology Phosphoinositide 3-Kinase/Mammalian Target of Rapamyo kade Is an Effective Radiosensitizing Strategy for the Treat on–Small Cell Lung Cancer Harboring <i>K-RAS</i> Mutations	cin ment	Systemic Delivery of Tumor Sup microRNA Mimics Using a Neut Emulsion Inhibits Lung Tumors	opressor ral Lipid in Mice
AS	Suppression of non-small cell lung tumo development by the <i>let-7</i> microRNA fam Madhu S. Kumar*, Stefan J. Erkeland ⁺ , Ryan E. Pester*, Cindy Y. Chen*, Margaret S. Ebert and Tyler Jacks* ^{±5}	r ily *, Phillip A. Sharp* [‡]	A Synthetic Lethal Interaction betw Oncogenes and Cdk4 Unveils a Th Strategy for Non-small Cell Lung C	veen K-Ras erapeutic Carcinoma
Na	Center for Cancer Research and "Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute and 'Department of Hematology, Erasmus University Medical Center, 3015 GE, Rotterdam, The Netherlands Contributed by Phillip A. Sharp, December 31, 2007 (sent for review December 4, 2007)	of Technology, Cambridge	The Differential Effects of Mutant <i>p53</i> A Murine Lung Cancer Research Article	Illeles on Advanced
	Mutations in BRAF and KRAS Converge on Activation Mitogen-Activated Protein Kinase Pathway in Lung Ca	lammalian Target of plasia Induced by Or of the anc	Rapamycin Reverses Alveolar ncogenic <i>K-ras</i> TARGETING RAS PATH WAYS IN CA	SIGNALLING
LET Requi	TERS rement for NF-κB signalling in a mouse model of adenocarcinoma	Cell c-Raf, for Dev Non-Sr	but Not B-Raf, Is Essential velopment of <i>K-Ras</i> Oncogene-Dri mall Cell Lung Carcinoma	Article

EARLY LESIONS

ADVANCED TUMORS

Study EARLY lesions to:

- identify the nature of K-Ras-dependent essential mediators in NSCLC
- discover new druggable targets for K-Ras-driven NSCLC treatment

K-Ras^{G12V} early NSCLC lesions

(BIDMC, Boston)

Ddr1 as a novel therapeutic target: pharmacologic validation

Discovery and Optimization of 3-(2-(Pyrazolo[1,5-*a*]pyrimidin-6-yl)ethynyl)benzamides as Novel Selective and Orally Bioavailable Discoidin Domain Receptor 1 (DDR1) Inhibitors

* 7rh inhibitor treatment, 50mg/kg, daily oral administration

DRUG-INSENSITIVE TUMORS

DRUG-SENSITIVE TUMORS

Adapted from Borza et al, Matrix Biology (2013)

Ddr1 as a novel therapeutic target: in search of a mechanism

DDR1 Receptor Tyrosine Kinase Promotes Prosurvival Pathway through Notch1 Activation*

Received for publication, March 2, 2011 Published, JBC Papers in Press, March 13, 2011, DOI 10.1074/jbc.M111.236612

Hyung-Gu Kim[‡], So-Young Hwang[‡], Stuart A. Aaronson[§], Anna Mandinova[‡], and Sam W. Lee^{±1}

From the [‡]Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 and the [§]Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029

Ddr1 as a novel therapeutic target: in search of a mechanism

Adapted from Borza et al, Matrix Biology (2013)

Ddr1 as a novel therapeutic target: in search of a mechanism

GENETIC DELETION OF Ddr1

- Increase in overall survival
- Decrease in tumor number
- Decrease in tumor size
- Effect in tumor grading

PHARMACOLOGICAL INHIBITION OF Ddr1

- Efficacy of 7rh as single agent
- Efficacy of 7rh in combination with chemotherapy
- Efficacy of 7rh in combination with LY-411575

Ddr1 as a novel therapeutic target in aggressive NSCLC

Gene	K-RAS	DDR1	HES1
K-RAS		0.011*	0.025*
DDR1			0.012**
HES1			

n = 554 patients.

*Tendency towards co-occurrence (2<Odds ratio<10)

** Strong tendency towards co-occurrence (Odds ratio>10)

IHC: DDR1

- ✓ Upon K-Ras^{G12V} expression in lung, there are at least two different types of early lesions based on gene expression profiling (T1 and T2).
- T1 signature is closer to normal lung epithelial cells and could help to identify new tumor suppressor genes. T2 overlaps with advanced murine and human NSCLC signature, thus suggesting that the aggressiveness of lesions could be determined early during tumor onset.
- By an unbiased approach we identified Ddr1 as a valuable therapeutic target for K-Ras mutated NSCLC.
- Genetic ablation or pharmacological inhibition of Ddr1 impairs tumor growth in p53proficient K-Ras^{G12V} NSCLC.
- Combined inhibition of Ddr1 and Notch signaling efficiently triggers an apoptotic response even in p53-deficient K-Ras^{G12V} NSCLC.

- There are >800 drugs targeting signaling pathways; finding the right drug (or combination of) for personalized treatment is challenging.
- Tumor evolution, heterogeneity and resistance.

Kreso & Dick, Cell Stem Cell 2014

Swanton, Cancer Res 2012

Cancer cell line encyclopedia

K-RAS

Kreso & Dick, Cell Stem Cell 2014

Swanton, Cancer Res 2012

Experimental Oncology Group:

Mariano Barbacid Chiara Ambrogio Rafael Blasco Emilie Bousquet Sarah Francoz Patricia Nieto

Collaborators:

Ke Ding (GIBG, Guangzhou) Pierre Dubus (Univ. Bordeaux) Montserrat Sánchez-Céspedes (Idibell, Barcelona) Manuel Serrano (CNIO) Gonzalo Gómez (CNIO)

Centro Nacional de Investigaciones Oncológicas

IHC: SERPINB5

Combination therapy: validating novel targets (II)

