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A. Samson Stochastic models Workshop, Bordeaux, 11/10/2013 1 / 29



Growth data

Data measured in (pre)-clinical trials
I Height, weight of subjects
I Tumor volume, tumor size
I Circulating biomarkers

Longitudinal data
I Several subjects i = 1, . . . , n
I Reapeated measures at times

tij , j = 0, . . . , J
I Observations yij at time tij
I Measurement noise
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Mixed-effect models

The FDA has recommended the use of mixed-effect models to analyze
longitudinal data of tumor response to treatment
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Mixed-effect model
Repeated observations:

yij at time tij , i = 1, . . . , n, j = 0, . . . , J

Standard regression model

yij = f (φi , tij) + g(φi , tij)εij

εij ∼iid N (0, σ2)

φi ∼iid N (µ,Ω)

I f : parametric regression function
I φi : ”biological” or ”physiological” random parameters
I g : error model [homoscedastic g = 1 or heteroscedastic g = f ]

Parameters to be estimated
θ = (µ,Ω, σ)
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Likelihood

Notations
I yi = yi0:J = (yi0, . . . , yiJ): data vector of subject i
I y = (y1, . . . , yn): global data vector

Likelihood function

L(y ; θ) =
n∏

i=1

p(yi ; θ) =
n∏

i=1

∫
p(yi , φi ; θ)dφi

=
n∏

i=1

∫
p(yi |φi ; θ)p(φi ; θ)dφi

⇒ If f not linear with respect to φi , likelihood not explicit
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Maximum likelihood estimation

Approximation of the likelihood
I Linearization of the likelihood [Pinheiro and Bates, 2000]

Numerical computation of the likelihood

I Gaussian quadrature [Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]

I Monte Carlo EM algorithm (MCEM) [Wei and Tanner, 1991]

I Stochastic Approximation EM algorithm (SAEM) [Kuhn and Lavielle, 2005]

Bayesian approach
I Prior choice on θ
I MCMC algorithms [Spiegelhater et al, 1992]

I Posterior distribution p(θ|y)
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Gaussian quadrature methods
[Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]

Gauss-Hermite quadrature of order R
I Individual likelihood

L(yi ; θ) =

∫
p(yi |φi ; θ)p(φi ; θ)dφi

I Approximation

LG (yi ; θ) =
R∑

r=1

πrp(yi |ω
√

2rzr/µ; θ)

- zr , r = 1, . . . ,R zeros of the Hermite polynomials HR(·) of degree R
- πr adequate weights

I Convergence of LR to the true likelihood when R tends to infinity

Software: SAS
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Stochastic Approximation EM (SAEM) Algorithm
[Dempster, Laird, Rubin, 1977; Delyon, Lavielle and Moulines, 1999; Kuhn, Lavielle, 2005]

SAEM algorithm
I E step

- S step : simulation of (φm) under distribution p(φ|y ; θ̂m) with MCMC algorithm

- SA step : approximation of

Qm+1(θ) = E
[

log p(y , φ; θ) | y , θ̂m
]

with a stochastic approximation scheme of step size αm

Qm+1(θ) = (1− αm)Qm(θ) + αm log p(y , φm; θ)

I M step: update of θ̂m
θ̂m+1 = arg max

θ
Qm+1(θ)

I Convergence of θ̂m to the maximum likelihood estimator

Software: Monolix
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Growth models (regression function f )

Several classes of models
I Standard growth functions

- Logistic, Gompertz, Richards, Weibull [Zimmerman and Nunez-Anton, 2001]

- Monotone increase

I Phenomenological models

- System theory [Wiener, 1948; Bertalanffy, 1960; Bastogne et al; 2009]

- Holistic representation, black-box models

I Mechanistic models

- System of ordinary differential equations [Simeoni et al, 2004; Ribba et al, 2010, 2011,

2012]

- Partial differential equations [Ribba, Colin, Schnell 2006; Colin et al, 2013; Lagaert PhD]

- Dynamic of angiogenesis
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Growth data
[Donnet, Foulley, Samson, 2010]

Population
I 50 pigs
I 11 weight measures

per subject

Gompertz function

I f (φ, t) = Ae−Be−Ct

I φ = (A,B,C)
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Population prediction f (µ̂, t), Individual
prediction f (φ̂i , t)
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Growth inhibition study
[Bastogne, Samson et al, 2010]

Data
I Population

- 96 Female mice, with tumor implantation
- Treatments: no treatmtent (NT) or radiotherapy (RT) or concomitant

radiochemotherapy (RCT) or photodynamic therapy (PDT)
I Measurements

- v(t) tumor volume at time t

- yij =3
√

6v(t)
π

Linear-Exponential-Linear Model (phenomenological)

f (t, φ) = s0

[
1 + at︸ ︷︷ ︸
natural
growth

−bt − k2 T (1− e−(t−τ)/T ) 1t≥τ − k3 (t − τ) 1t≥τ︸ ︷︷ ︸
treatment response

]

(1)
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Evaluation of the treatments

Treatment effects
I PDT on

transient
decrease

I Duration
I Dose of

radiation

Time [Day]

D
ia

m
et

er
 [m

m
]

0 10 20
5

10

15

20

0 10 20
8

10

12

14

16

0 10 20
5

10

15

0 10 20
5

10

15

20

(a) Radiotherapy responses

Time [Day]

D
ia

m
et

er
 [m

m
]

0 20 40
6

8

10

12

14

0 20 40
5

10

15

20

0 20 40
7

7.5

8

8.5

9

9.5

0 20 40
6

8

10

12

14

16

(b) Concomitant radiochemotherapy responses

Time [Day]

D
ia

m
et

er
 [m

m
]

0 20 40
4

6

8

10

12

14

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

0 20 40
3

4

5

6

7

(c) Photodynamic therapy responses
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Vasculature normalization [B. Ribba’s slides]

Hypothesis
I Angiogenesis inhibitors

could contribute to
normalize vasculature

Data
I Sunitinib oral molecule
I 30 subjects
I 27 points per subject up

to 100 days
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Model

7 parameters: kS , λ, b, γ, β,V0,K0
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Results

Treatment effects Predictions
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Limits of complex growth models

Complex deterministic models
I Ordinary differential equations

- Large number of equations: difficulty to solve the system with discrete numerical
scheme. Example: [Lignet et al, 2013] 37 equations, 78 parameters

- Large number of parameters, some of them have to be fixed
I Partial Differential Equations

- few parameters
- computationally intensive to obtain one realization of the solution

Alternative: Stochastic models

I Lot of noise for some biomarkers (different from measurement noise)
I Reduction of the dimension of the system [Mortensen et al, 2007; Donnet and Samson,

2013]

I Introduction of a stochastic part to ”absorb” all details that are not modeled
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Stochastic Differential Equation

SDE in biology
I Pharmacocinetics [Ditlevsen et al, 2005; Ditlevsen, Samson, 2013; Donnet, Samson, 2013]

I Neurobiology [Hopfner and Broda, 2005; Picchini et al, 2008; Ditlevsen, Samson, 2013]

I Growth [Donnet et al, 2010]

New source of variability
I Variability around the deterministic model: what is not modeled by the

deterministic part
I Within-subject variability: variability in time
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Variability around the deterministic model

Ordinary differential equation
I dXt =

(
−Xt
τ

+ φ
)
dt

I Deterministic solution
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Variability around the deterministic model

Stochastic differential equation
I dXt =

(
−Xt
τ

+ φ
)
dt+σdBt with Bt a Brownian motion

I Stochastic solution
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Variability around the deterministic model

Stochastic differential equation
I dXt =

(
−Xt
τ

+ φ
)
dt+σdBt with Bt a Brownian motion

I Stochastic solution
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Variability around the deterministic model

Stochastic differential equation
I dXt =

(
−Xt
τ

+ φ
)
dt+σdBt with Bt a Brownian motion

I Stochastic solution
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Stochastic Differential Equation with random parameters

dXt = a(Xt , φ)dt + bγ(Xt , φ)dBt , X0 = x0

SDE with random parameters

dXit = a(Xit , φi )dt + bγ(Xit , φi )dBit , Xi0 = x0

with
I (φi ) random variables
I (Bit) independent brownian motions

SDE mixed models

yij = Xitij + εij , εij ∼iid N (0, σ2)

dXit = a(Xit , φi )dt + bγ(Xit , φi )dBit , Xi0 = x0

φi ∼iid N (µ,Ω)

Parameters to be estimated: θ = (µ,Ω, γ, σ)
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SDE mixed models

yij = Xitij + εij , εij ∼iid N (0, σ2)

dXit = a(Xit , φi )dt + bγ(Xit , φi )dBit , Xi0 = x0

φi ∼iid N (µ,Ω)

Notations

Xi = Xi,0:J = (Xti0 , . . . ,XtiJ ): hidden diffusion of subject i

X = (X1, . . . ,Xn)

Likelihood for subject i

p(yi ; θ) =

∫
p(yi ,Xi , φi ; θ)dXidφi

=

∫
p(yi |Xi ; θ)p(Xi |φi ; θ)p(φi ; θ)dXidφi
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Likelihood

Girsanov formula gives

p(Xi ; θ) =

∫
exp

(∫
a(Xi (s), φi )

b2(Xi (s), φi )
dXi (s)−

1

2

∫
a2(Xi (s), φi )

b2(Xi (s), φi )
ds

)
p(φi ; θ)dφi

But explicit only for linear drift and known volatility

Alternative: discretization of the SDE

p(yi ; θ) =

∫ ∫
p(yi |Xi ; θ)p(Xi |φi ; θ)p(φi ; θ)dXidφi

=

∫ ∫ J∏
j=0

p(yij |Xtij ; θ)

×
J∏

j=1

p(Xtij |Xtij−1 , φi ; θ)p(φi ; θ)dXidφi
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Estimation methods based on approximations

Approximation of the conditional distribution
I Extended Kalman filter
I Stochastic or deterministic maximisation algorithms
I [Tornoe et al 2005; Overgaard et al 2005; Delattre and Lavielle, 2013]

Approximation of the likelihood
I Gaussian quadrature [Picchini et al, 2010]

I Laplace approximation [Picchini and Ditlevsen, 2011]

I Hermite expansion of the transition density if needed [Picchini et al, 2010]

I Simulation of the hidden SDE [Donnet and Samson, 2008; Donnet et al, 2010; Donnet,

Samson, 2013]
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Estimation methods based on a simulation step

Estimation algorithms
I Bayesian [Donnet, Foulley, Samson, 2010]

I SAEM [Donnet and Samson, 2008; Donnet, Samson, 2013]

Simulation step
I For i = 1, . . . , n, simulation of

(Xim, φim) ∼ p(Xi,0:J , φi |yi,0:J ; θ̂m)

I Gibbs algorithm

- p(φi |yi,0:J ,Xi,0:J ; θ̂m): standard by Metropolis-Hastings

- p(Xi,0:J |yi,0:J , φi ; θ̂m): block decomposition and iterative simulation
- ⇒ slow convergence of the chain

I Particle filter coupled with MCMC (PMCMC)

- [Del Moral et al, 2001; Doucet et al, 2001; Chopin, 2004; Andrieu et al, 2010]

- Metropolis Hastings algorithm targeting directly p(Xi,0:J , φi |yi,0:J ; θ̂m)
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Improvement of the predictions
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Meta-models: another alternative

Complex mechanistic models
I Approximation of the solution of the model at each iteration of the estimation

method
I Partial differential equation solution: difficult to obtain

Meta-model
I Precomputation on a pre-defined grid

- Precise evaluation of the solution on the points of the grid
I Approximation

- Nearest neighborhood approximation [Barthelemy, Lavielle, submitted]

- Linear approximation on the grid [Grenier, Louvet, Vigneaux, submitted]

I Computational cost gain (PDE example) [Grenier, Louvet, Vigneaux, submitted]

- Exact SAEM: 23 days
- Interpolation with heterogeneous grid: 26 min
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Conclusion

Mechanistic models
I Mechanistic description

- Angiogenesis dynamic
- Action of molecules

I Good fitting on real data
I Need powerful statistical methods because large number of parameters/random

effects

Stochastic models
I Advantages

- Less parameters, less equations
- Allow stochastic individual variations around the deterministic theoretical model
- Improvement of the predictions

I Need specific statistical tools to filter the stochastic process
I Need large number of data → pre-clinical data
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Perspectives

Meta-models
I Nearest neighborhood or linear approximation

- Estimation on a approximated model
- Convergence to an approximate MLE

I More sophisticated meta-models

- Gaussian process, Reproducing Kernel Hilbert space (RKHS), ...
- Convergence to the exact MLE joint work with P. Barbillon and C. Barthelemy

Non parametric estimation
I Density of the random effects [Comte et al, 2012]

I Drift function of the stochastic model [Cattiaux et al, submitted]
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