Stochastic models Growth models and some estimation methods

Adeline Leclercq Samson

Laboratoire Jean Kuntzmann, Université Joseph Fourier, Grenoble

Growth data

- Data measured in (pre)-clinical trials
 - Height, weight of subjects
 - Tumor volume, tumor size
 - Circulating biomarkers
- Longitudinal data
 - Several subjects $i = 1, \ldots, n$
 - Reapeated measures at times
 t_{ij}, j = 0,..., J
 - Observations y_{ij} at time t_{ij}
 - Measurement noise
- Mixed-effect models
- The FDA has recommended the use of mixed-effect models to analyze longitudinal data of tumor response to treatment

Mixed-effect model

• Repeated observations:

$$y_{ij}$$
 at time t_{ij} , $i = 1, \ldots, n$, $j = 0, \ldots, J$

• Standard regression model

$$egin{array}{rcl} egin{array}{rcl} y_{ij} &=& f(\phi_i,t_{ij}) + g(\phi_i,t_{ij})arepsilon_{ij} \ arepsilon_{ij} &\sim_{iid} & \mathcal{N}(0,\sigma^2) \ \phi_i &\sim_{iid} & \mathcal{N}(\mu,\Omega) \end{array}$$

- f: parametric regression function
- ϕ_i : "biological" or "physiological" random parameters
- g: error model [homoscedastic g = 1 or heteroscedastic g = f]
- Parameters to be estimated

$$\theta = (\mu, \Omega, \sigma)$$

Likelihood

- Notations
 - y_i = y_{i0:J} = (y_{i0},..., y_{iJ}): data vector of subject i
 y = (y₁,..., y_n): global data vector
- Likelihood function

$$L(y;\theta) = \prod_{i=1}^{n} p(y_i;\theta) = \prod_{i=1}^{n} \int p(y_i,\phi_i;\theta) d\phi_i$$
$$= \prod_{i=1}^{n} \int p(y_i|\phi_i;\theta) p(\phi_i;\theta) d\phi_i$$

 \Rightarrow If f not linear with respect to ϕ_i , likelihood not explicit

Maximum likelihood estimation

- Approximation of the likelihood
 - Linearization of the likelihood [Pinheiro and Bates, 2000]
- Numerical computation of the likelihood
 - Gaussian quadrature [Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]
 - Monte Carlo EM algorithm (MCEM) [Wei and Tanner, 1991]
 - Stochastic Approximation EM algorithm (SAEM) [Kuhn and Lavielle, 2005]
- Bayesian approach
 - Prior choice on θ
 - MCMC algorithms [Spiegelhater et al, 1992]
 - Posterior distribution $p(\theta|y)$

Gaussian quadrature methods

[Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]

- Gauss-Hermite quadrature of order R
 - Individual likelihood

$$L(y_i; \theta) = \int p(y_i | \phi_i; \theta) p(\phi_i; \theta) d\phi_i$$

Approximation

$$L^{G}(\mathbf{y}_{i};\theta) = \sum_{r=1}^{R} \pi_{r} p(\mathbf{y}_{i}|\omega\sqrt{2}r\mathbf{z}_{r}/\mu;\theta)$$

- z_r , r = 1, ..., R zeros of the Hermite polynomials $H_R(\cdot)$ of degree R- π_r adequate weights

- Convergence of L^R to the true likelihood when R tends to infinity
- Software: SAS

Stochastic Approximation EM (SAEM) Algorithm

[Dempster, Laird, Rubin, 1977; Delyon, Lavielle and Moulines, 1999; Kuhn, Lavielle, 2005]

- SAEM algorithm
 - E step
 - S step : simulation of (ϕ_m) under distribution $p(\phi|y; \widehat{\theta}_m)$ with MCMC algorithm
 - SA step : approximation of

$$Q_{m+1}(\theta) = \mathbb{E}\left[\log p(y,\phi;\theta) \,|\, y, \widehat{\theta}_m\right]$$

with a stochastic approximation scheme of step size α_m

$$Q_{m+1}(\theta) = (1 - \alpha_m)Q_m(\theta) + \alpha_m \log p(y, \phi_m; \theta)$$

• *M* step: update of $\hat{\theta}_m$

$$\widehat{ heta}_{m+1} = rg\max_{ heta} \mathcal{Q}_{m+1}(heta)$$

- Convergence of $\hat{\theta}_m$ to the maximum likelihood estimator
- Software: Monolix

A. Samson

Stochastic models

Growth models (regression function f)

- Several classes of models
 - Standard growth functions
 - Logistic, Gompertz, Richards, Weibull [Zimmerman and Nunez-Anton, 2001]
 - Monotone increase
 - Phenomenological models
 - System theory [Wiener, 1948; Bertalanffy, 1960; Bastogne et al; 2009]
 - Holistic representation, black-box models
 - Mechanistic models
 - System of ordinary differential equations [Simeoni et al, 2004; Ribba et al, 2010, 2011, 2012]
 - Partial differential equations [Ribba, Colin, Schnell 2006; Colin et al, 2013; Lagaert PhD]
 - Dynamic of angiogenesis

Growth data

[Donnet, Foulley, Samson, 2010]

- Population
 - 50 pigs
 - 11 weight measures per subject
- Gompertz function
 - $f(\phi, t) = A e^{-Be^{-Ct}}$
 - ► *φ* = (*A*, *B*, *C*)

Stochastic models

Growth inhibition study

[Bastogne, Samson et al, 2010]

- Data
 - Population
 - 96 Female mice, with tumor implantation
 - Treatments: no treatment (NT) or radiotherapy (RT) or concomitant radiochemotherapy (RCT) or photodynamic therapy (PDT)
 - Measurements
 - v(t) tumor volume at time t

-
$$y_{ij} = \sqrt[3]{\frac{6v(t)}{\pi}}$$

• Linear-Exponential-Linear Model (phenomenological)

$$f(t,\phi) = s_0 \left[\underbrace{1+at}_{\substack{natural \\ growth}} \underbrace{-bt - k_2 T \left(1 - e^{-(t-\tau)/T}\right) \mathbf{1}_{t \ge \tau} - k_3 \left(t-\tau\right) \mathbf{1}_{t \ge \tau}}_{treatment \ response} \right]$$

(1)

Evaluation of the treatments

- Treatment effects
 - PDT on transient decrease
 - Duration
 - Dose of radiation

11 / 29

Vasculature normalization [B. Ribba's slides]

- Hypothesis
 - Angiogenesis inhibitors could contribute to normalize vasculature
- Data
 - Sunitinib oral molecule
 - 30 subjects
 - 27 points per subject up to 100 days

Model

$$\begin{aligned} \frac{dS}{dt} &= -k_S S\\ \frac{dV}{dt} &= \lambda V \left(1 - \frac{V}{K} \right)\\ \frac{dK}{dt} &= b V^{\gamma} - \beta k_s S K \end{aligned}$$

• 7 parameters: k_S , λ , b, γ , β , V_0 , K_0

Results

Treatment effects

Predictions

Limits of complex growth models

- Complex deterministic models
 - Ordinary differential equations
 - Large number of equations: difficulty to solve the system with discrete numerical scheme. Example: [Lignet et al, 2013] 37 equations, 78 parameters
 - Large number of parameters, some of them have to be fixed
 - Partial Differential Equations
 - few parameters
 - computationally intensive to obtain one realization of the solution
- Alternative: Stochastic models
 - Lot of noise for some biomarkers (different from measurement noise)
 - Reduction of the dimension of the system [Mortensen et al, 2007; Donnet and Samson, 2013]
 - Introduction of a stochastic part to "absorb" all details that are not modeled

Stochastic Differential Equation

• SDE in biology

- Pharmacocinetics [Ditlevsen et al, 2005; Ditlevsen, Samson, 2013; Donnet, Samson, 2013]
- ▶ Neurobiology [Hopfner and Broda, 2005; Picchini et al, 2008; Ditlevsen, Samson, 2013]
- Growth [Donnet et al, 2010]

• New source of variability

- Variability around the deterministic model: what is not modeled by the deterministic part
- Within-subject variability: variability in time

- Ordinary differential equation
 - $dX_t = \left(-\frac{X_t}{\tau} + \phi\right) dt$
 - Deterministic solution

- Stochastic differential equation
 - $dX_t = \left(-\frac{X_t}{\tau} + \phi\right) dt + \sigma dB_t$ with B_t a Brownian motion
 - Stochastic solution

- Stochastic differential equation
 - $dX_t = \left(-\frac{X_t}{\tau} + \phi\right) dt + \sigma dB_t$ with B_t a Brownian motion
 - Stochastic solution

- Stochastic differential equation
 - $dX_t = \left(-\frac{X_t}{\tau} + \phi\right) dt + \sigma dB_t$ with B_t a Brownian motion
 - Stochastic solution

Stochastic Differential Equation with random parameters

$$dX_t = a(X_t, \phi)dt + b_{\gamma}(X_t, \phi)dB_t, \quad X_0 = x_0$$

• SDE with random parameters

$$dX_{it} = a(X_{it}, \phi_i)dt + b_{\gamma}(X_{it}, \phi_i)dB_{it}, \quad X_{i0} = x_0$$

with

- (ϕ_i) random variables
- (B_{it}) independent brownian motions
- SDE mixed models

$$\begin{array}{rcl} y_{ij} & = & X_{it_{ij}} + \varepsilon_{ij}, & \varepsilon_{ij} \sim_{iid} \mathcal{N}(0,\sigma^2) \\ dX_{it} & = & a(X_{it},\phi_i)dt + b_{\gamma}(X_{it},\phi_i)dB_{it}, & X_{i0} = x_0 \\ \phi_i & \sim_{iid} & \mathcal{N}(\mu,\Omega) \end{array}$$

Parameters to be estimated: $\theta = (\mu, \Omega, \gamma, \sigma)$

A. Samson

Stochastic models

SDE mixed models

$$\begin{array}{lll} y_{ij} & = & X_{it_{ij}} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim_{iid} \mathcal{N}(0,\sigma^2) \\ dX_{it} & = & a(X_{it},\phi_i)dt + b_{\gamma}(X_{it},\phi_i)dB_{it}, \quad X_{i0} = x_0 \\ \phi_i & \sim_{iid} \quad \mathcal{N}(\mu,\Omega) \end{array}$$

Notations

• $X_i = X_{i,0:J} = (X_{t_{i0}}, \dots, X_{t_{iJ}})$: hidden diffusion of subject *i* • $X = (X_1, \dots, X_n)$

Likelihood for subject i

$$p(y_i;\theta) = \int p(y_i, X_i, \phi_i; \theta) dX_i d\phi_i$$

=
$$\int p(y_i | X_i; \theta) p(X_i | \phi_i; \theta) p(\phi_i; \theta) dX_i d\phi_i$$

Likelihood

Girsanov formula gives

$$p(X_i;\theta) = \int \exp\left(\int \frac{a(X_i(s),\phi_i)}{b^2(X_i(s),\phi_i)} dX_i(s) - \frac{1}{2} \int \frac{a^2(X_i(s),\phi_i)}{b^2(X_i(s),\phi_i)} ds\right) p(\phi_i;\theta) d\phi_i$$

But explicit only for linear drift and known volatility

Alternative: discretization of the SDE

$$p(y_i;\theta) = \int \int p(y_i|X_i;\theta)p(X_i|\phi_i;\theta)p(\phi_i;\theta)dX_id\phi_i$$

$$= \int \int \prod_{j=0}^{J} p(y_{ij}|X_{t_{ij}};\theta)$$

$$\times \prod_{j=1}^{J} p(X_{t_{ij}}|X_{t_{ij-1}},\phi_i;\theta)p(\phi_i;\theta)dX_id\phi_i$$

Estimation methods based on approximations

- Approximation of the conditional distribution
 - Extended Kalman filter
 - Stochastic or deterministic maximisation algorithms
 - [Tornoe et al 2005; Overgaard et al 2005; Delattre and Lavielle, 2013]
- Approximation of the likelihood
 - ► Gaussian quadrature [Picchini et al, 2010]
 - Laplace approximation [Picchini and Ditlevsen, 2011]
 - Hermite expansion of the transition density if needed [Picchini et al, 2010]
 - Simulation of the hidden SDE [Donnet and Samson, 2008; Donnet et al, 2010; Donnet, Samson, 2013]

Estimation methods based on a simulation step

• Estimation algorithms

- Bayesian [Donnet, Foulley, Samson, 2010]
- SAEM [Donnet and Samson, 2008; Donnet, Samson, 2013]
- Simulation step
 - For $i = 1, \ldots, n$, simulation of

 $(X_{im}, \phi_{im}) \sim p(X_{i,0;J}, \phi_i | y_{i,0;J}; \widehat{\theta}_m)$

- Gibbs algorithm
 - $p(\phi_i|y_{i,0:J}, X_{i,0:J}; \hat{\theta}_m)$: standard by Metropolis-Hastings
 - $p(X_{i,0:J}|y_{i,0:J}, \phi_i; \hat{\theta}_m)$: block decomposition and iterative simulation
 - \Rightarrow slow convergence of the chain
- Particle filter coupled with MCMC (PMCMC)
 - [Del Moral et al, 2001; Doucet et al, 2001; Chopin, 2004; Andrieu et al, 2010]
 - Metropolis Hastings algorithm targeting directly $p(X_{i,0:J}, \phi_i | y_{i,0:J}; \hat{\theta}_m)$

Improvement of the predictions

Workshop, Bordeaux, 11/10/2013 26 / 29

A. Samson

Stochastic models

Meta-models: another alternative

- Complex mechanistic models
 - Approximation of the solution of the model at each iteration of the estimation method
 - Partial differential equation solution: difficult to obtain
- Meta-model
 - Precomputation on a pre-defined grid
 - Precise evaluation of the solution on the points of the grid
 - Approximation
 - Nearest neighborhood approximation [Barthelemy, Lavielle, submitted]
 - Linear approximation on the grid [Grenier, Louvet, Vigneaux, submitted]
 - Computational cost gain (PDE example) [Grenier, Louvet, Vigneaux, submitted]
 - Exact SAEM: 23 days
 - Interpolation with heterogeneous grid: 26 min

Conclusion

- Mechanistic models
 - Mechanistic description
 - Angiogenesis dynamic
 - Action of molecules
 - Good fitting on real data
 - Need powerful statistical methods because large number of parameters/random effects
- Stochastic models
 - Advantages
 - Less parameters, less equations
 - Allow stochastic individual variations around the deterministic theoretical model
 - Improvement of the predictions
 - Need specific statistical tools to filter the stochastic process
 - ▶ Need large number of data → pre-clinical data

Perspectives

- Meta-models
 - Nearest neighborhood or linear approximation
 - Estimation on a approximated model
 - Convergence to an approximate MLE
 - More sophisticated meta-models
 - Gaussian process, Reproducing Kernel Hilbert space (RKHS), ...
 - Convergence to the exact MLE joint work with P. Barbillon and C. Barthelemy
- Non parametric estimation
 - Density of the random effects [Comte et al, 2012]
 - Drift function of the stochastic model [Cattiaux et al, submitted]