Stochastic models

Growth models and some estimation methods

Adeline Leclercq Samson

Laboratoire Jean Kuntzmann, Université Joseph Fourier, Grenoble

Growth data

- Data measured in (pre)-clinical trials
- Height, weight of subjects
- Tumor volume, tumor size
- Circulating biomarkers
- Longitudinal data
- Several subjects $i=1, \ldots, n$
- Reapeated measures at times $t_{i j}, \quad j=0, \ldots, J$
- Observations $y_{i j}$ at time $t_{i j}$
- Measurement noise
- Mixed-effect models
- The FDA has recommended the use of mixed-effect models to analyze longitudinal data of tumor response to treatment

Mixed-effect model

- Repeated observations:

$$
y_{i j} \text { at time } t_{i j}, \quad i=1, \ldots, n, \quad j=0, \ldots, J
$$

- Standard regression model

$$
\begin{aligned}
y_{i j} & =f\left(\phi_{i}, t_{i j}\right)+g\left(\phi_{i}, t_{i j}\right) \varepsilon_{i j} \\
\varepsilon_{i j} & \sim_{i i d} \mathcal{N}\left(0, \sigma^{2}\right) \\
\phi_{i} & \sim_{i i d} \mathcal{N}(\mu, \Omega)
\end{aligned}
$$

- f : parametric regression function
- ϕ_{i} : "biological" or "physiological" random parameters
- g : error model [homoscedastic $g=1$ or heteroscedastic $g=f$]
- Parameters to be estimated

$$
\theta=(\mu, \Omega, \sigma)
$$

Likelihood

- Notations
- $y_{i}=y_{i 0: J}=\left(y_{i 0}, \ldots, y_{i J}\right)$: data vector of subject i
- $y=\left(y_{1}, \ldots, y_{n}\right)$: global data vector
- Likelihood function

$$
\begin{aligned}
L(y ; \theta) & =\prod_{i=1}^{n} p\left(y_{i} ; \theta\right)=\prod_{i=1}^{n} \int p\left(y_{i}, \phi_{i} ; \theta\right) d \phi_{i} \\
& =\prod_{i=1}^{n} \int p\left(y_{i} \mid \phi_{i} ; \theta\right) p\left(\phi_{i} ; \theta\right) d \phi_{i}
\end{aligned}
$$

\Rightarrow If f not linear with respect to ϕ_{i}, likelihood not explicit

Maximum likelihood estimation

- Approximation of the likelihood
- Linearization of the likelihood [Pinheiro and Bates, 2000]
- Numerical computation of the likelihood
- Gaussian quadrature [Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]
- Monte Carlo EM algorithm (MCEM) [Wei and Tanner, 1991]
- Stochastic Approximation EM algorithm (SAEM) [Kuhn and Lavielle, 2005]
- Bayesian approach
- Prior choice on θ
- MCMC algorithms [Spiegelhater et al, 1992]
- Posterior distribution $p(\theta \mid y)$

Gaussian quadrature methods

[Davidian and Giltinan, 1995; Guedj et al, 2007; Picchini et al, 2010]

- Gauss-Hermite quadrature of order R
- Individual likelihood

$$
L\left(y_{i} ; \theta\right)=\int p\left(y_{i} \mid \phi_{i} ; \theta\right) p\left(\phi_{i} ; \theta\right) d \phi_{i}
$$

- Approximation

$$
L^{G}\left(y_{i} ; \theta\right)=\sum_{r=1}^{R} \pi_{r} p\left(y_{i} \mid \omega \sqrt{2} r z_{r} / \mu ; \theta\right)
$$

- $z_{r}, r=1, \ldots, R$ zeros of the Hermite polynomials $H_{R}(\cdot)$ of degree R
- π_{r} adequate weights
- Convergence of L^{R} to the true likelihood when R tends to infinity
- Software: SAS

Stochastic Approximation EM (SAEM) Algorithm

[Dempster, Laird, Rubin, 1977; Delyon, Lavielle and Moulines, 1999; Kuhn, Lavielle, 2005]

- SAEM algorithm
- Estep
- S step : simulation of $\left(\phi_{m}\right)$ under distribution $p\left(\phi \mid y ; \widehat{\theta}_{m}\right)$ with MCMC algorithm
- SA step : approximation of

$$
Q_{m+1}(\theta)=\mathbb{E}\left[\log p(y, \phi ; \theta) \mid y, \widehat{\theta}_{m}\right]
$$

with a stochastic approximation scheme of step size α_{m}

$$
Q_{m+1}(\theta)=\left(1-\alpha_{m}\right) Q_{m}(\theta)+\alpha_{m} \log p\left(y, \phi_{m} ; \theta\right)
$$

- M step: update of $\widehat{\theta}_{m}$

$$
\widehat{\theta}_{m+1}=\underset{\theta}{\arg \max } Q_{m+1}(\theta)
$$

- Convergence of $\widehat{\theta}_{m}$ to the maximum likelihood estimator
- Software: Monolix

Growth models (regression function f)

- Several classes of models
- Standard growth functions
- Logistic, Gompertz, Richards, Weibull [Zimmerman and Nunez-Anton, 2001]
- Monotone increase
- Phenomenological models
- System theory [Wiener, 1948; Bertalanffy, 1960; Bastogne et al; 2009]
- Holistic representation, black-box models
- Mechanistic models
- System of ordinary differential equations [Simeoni et al, 2004; Ribba et al, 2010, 2011, 2012]
- Partial differential equations [Ribba, Colin, Schnell 2006; Colin et al, 2013; Lagaert PhD]
- Dynamic of angiogenesis

Growth data

[Donnet, Foulley, Samson, 2010]

- Population
- 50 pigs
- 11 weight measures per subject
- Gompertz function
- $f(\phi, t)=A e^{-B e^{-C t}}$
- $\phi=(A, B, C)$

Population prediction $f(\hat{\mu}, t)$, Individual prediction $f\left(\phi_{i}, t\right)$

Growth inhibition study

[Bastogne, Samson et al, 2010]

- Data
- Population
- 96 Female mice, with tumor implantation
- Treatments: no treatmtent (NT) or radiotherapy (RT) or concomitant radiochemotherapy (RCT) or photodynamic therapy (PDT)
- Measurements
- $v(t)$ tumor volume at time t
- $y_{i j}={ }^{3} \sqrt{\frac{6 v(t)}{\pi}}$
- Linear-Exponential-Linear Model (phenomenological)

$$
\begin{equation*}
f(t, \phi)=s_{0}[\underbrace{1+a t}_{\substack{\text { natural } \\ \text { growth }}} \underbrace{-b t-k_{2} T\left(1-e^{-(t-\tau) / T}\right) \mathbf{1}_{t \geq \tau}-k_{3}(t-\tau) \mathbf{1}_{t \geq \tau}}_{\text {treatment response }}] \tag{1}
\end{equation*}
$$

Evaluation of the treatments

- Treatment effects
- PDT on transient decrease
- Duration
- Dose of radiation

(a) Radiotherapy responses

(b) Concomitant radiochemotherapy responses

(c) Photodynamic therapy responses

Vasculature normalization [B. Ribba's slides]

- Hypothesis
- Angiogenesis inhibitors could contribute to normalize vasculature
- Data
- Sunitinib oral molecule
- 30 subjects
- 27 points per subject up to 100 days

Model

$$
\begin{aligned}
& \frac{d S}{d t}=-k_{S} S \\
& \frac{d V}{d t}=\lambda V\left(1-\frac{V}{K}\right) \\
& \frac{d K}{d t}=b V^{\gamma}-\beta k_{s} S K
\end{aligned}
$$

- 7 parameters: $k_{s}, \lambda, b, \gamma, \beta, V_{0}, K_{0}$

Results

Treatment effects
Predictions

	Parameter (s.e)
k_{S}	$2.12(-)$
λ	$1.02(4 \%)$
b	$0.00168(4 \%)$
γ	$2(-)$
β	$0.0237(9 \%)$
V_{0}	$1.76(7 \%)$
K_{0}	$7.43(1 \%)$

Limits of complex growth models

- Complex deterministic models
- Ordinary differential equations
- Large number of equations: difficulty to solve the system with discrete numerical scheme. Example: [Lignet et al, 2013] 37 equations, 78 parameters
- Large number of parameters, some of them have to be fixed
- Partial Differential Equations
- few parameters
- computationally intensive to obtain one realization of the solution
- Alternative: Stochastic models
- Lot of noise for some biomarkers (different from measurement noise)
- Reduction of the dimension of the system [Mortensen et al, 2007; Donnet and Samson, 2013]
- Introduction of a stochastic part to "absorb" all details that are not modeled

Stochastic Differential Equation

- SDE in biology
- Pharmacocinetics [Ditlevsen et al, 2005; Ditlevsen, Samson, 2013; Donnet, Samson, 2013]
- Neurobiology [Hopfner and Broda, 2005; Picchini et al, 2008; Ditlevsen, Samson, 2013]
- Growth [Donnet et al, 2010]
- New source of variability
- Variability around the deterministic model: what is not modeled by the deterministic part
- Within-subject variability: variability in time

Variability around the deterministic model

- Ordinary differential equation
- $d X_{t}=\left(-\frac{X_{t}}{\tau}+\phi\right) d t$
- Deterministic solution

Variability around the deterministic model

- Stochastic differential equation
- $d X_{t}=\left(-\frac{X_{t}}{\tau}+\phi\right) d t+\sigma d B_{t}$ with B_{t} a Brownian motion
- Stochastic solution

Variability around the deterministic model

- Stochastic differential equation
- $d X_{t}=\left(-\frac{X_{t}}{\tau}+\phi\right) d t+\sigma d B_{t}$ with B_{t} a Brownian motion
- Stochastic solution

Variability around the deterministic model

- Stochastic differential equation
- $d X_{t}=\left(-\frac{X_{t}}{\tau}+\phi\right) d t+\sigma d B_{t}$ with B_{t} a Brownian motion
- Stochastic solution

Stochastic Differential Equation with random parameters

$$
d X_{t}=a\left(X_{t}, \phi\right) d t+b_{\gamma}\left(X_{t}, \phi\right) d B_{t}, \quad X_{0}=x_{0}
$$

- SDE with random parameters

$$
d X_{i t}=a\left(X_{i t}, \phi_{i}\right) d t+b_{\gamma}\left(X_{i t}, \phi_{i}\right) d B_{i t}, \quad X_{i 0}=x_{0}
$$

with

- $\left(\phi_{i}\right)$ random variables
- $\left(B_{i t}\right)$ independent brownian motions
- SDE mixed models

$$
\begin{aligned}
y_{i j} & =X_{i t_{i j}}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim_{i i d} \mathcal{N}\left(0, \sigma^{2}\right) \\
d X_{i t} & =a\left(X_{i t}, \phi_{i}\right) d t+b_{\gamma}\left(X_{i t}, \phi_{i}\right) d B_{i t}, \quad X_{i 0}=x_{0} \\
\phi_{i} & \sim_{i i d} \mathcal{N}(\mu, \Omega)
\end{aligned}
$$

Parameters to be estimated: $\theta=(\mu, \Omega, \gamma, \sigma)$

SDE mixed models

$$
\begin{aligned}
y_{i j} & =X_{i t_{j}}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim_{i i d} \mathcal{N}\left(0, \sigma^{2}\right) \\
d X_{i t} & =a\left(X_{i t}, \phi_{i}\right) d t+b_{\gamma}\left(X_{i t}, \phi_{i}\right) d B_{i t}, \quad X_{i 0}=x_{0} \\
\phi_{i} & \sim_{i i d} \mathcal{N}(\mu, \Omega)
\end{aligned}
$$

Notations

- $X_{i}=X_{i, 0: J}=\left(X_{t_{i 0}}, \ldots, X_{t_{i j}}\right)$: hidden diffusion of subject i
- $X=\left(X_{1}, \ldots, X_{n}\right)$

Likelihood for subject i

$$
\begin{aligned}
p\left(y_{i} ; \theta\right) & =\int p\left(y_{i}, X_{i}, \phi_{i} ; \theta\right) d X_{i} d \phi_{i} \\
& =\int p\left(y_{i} \mid X_{i} ; \theta\right) p\left(X_{i} \mid \phi_{i} ; \theta\right) p\left(\phi_{i} ; \theta\right) d X_{i} d \phi_{i}
\end{aligned}
$$

Likelihood

Girsanov formula gives

$$
p\left(X_{i} ; \theta\right)=\int \exp \left(\int \frac{a\left(X_{i}(s), \phi_{i}\right)}{b^{2}\left(X_{i}(s), \phi_{i}\right)} d X_{i}(s)-\frac{1}{2} \int \frac{a^{2}\left(X_{i}(s), \phi_{i}\right)}{b^{2}\left(X_{i}(s), \phi_{i}\right)} d s\right) p\left(\phi_{i} ; \theta\right) d \phi_{i}
$$

But explicit only for linear drift and known volatility
Alternative: discretization of the SDE

$$
\begin{aligned}
p\left(y_{i} ; \theta\right)= & \iint p\left(y_{i} \mid X_{i} ; \theta\right) p\left(X_{i} \mid \phi_{i} ; \theta\right) p\left(\phi_{i} ; \theta\right) d X_{i} d \phi_{i} \\
= & \iint \prod_{j=0}^{J} p\left(y_{i j} \mid X_{t_{i j}} ; \theta\right) \\
& \times \prod_{j=1}^{J} p\left(X_{t_{i j}} \mid X_{t_{i j-1}}, \phi_{i} ; \theta\right) p\left(\phi_{i} ; \theta\right) d X_{i} d \phi_{i}
\end{aligned}
$$

Estimation methods based on approximations

- Approximation of the conditional distribution
- Extended Kalman filter
- Stochastic or deterministic maximisation algorithms
- [Tornoe et al 2005; Overgaard et al 2005; Delattre and Lavielle, 2013]
- Approximation of the likelihood
- Gaussian quadrature [Picchini et al, 2010]
- Laplace approximation [Picchini and Ditlevsen, 2011]
- Hermite expansion of the transition density if needed [Picchini et al, 2010]
- Simulation of the hidden SDE [Donnet and Samson, 2008; Donnet et al, 2010; Donnet, Samson, 2013]

Estimation methods based on a simulation step

- Estimation algorithms
- Bayesian [Donnet, Foulley, Samson, 2010]
- SAEM [Donnet and Samson, 2008; Donnet, Samson, 2013]
- Simulation step
- For $i=1, \ldots, n$, simulation of

$$
\left(X_{i m}, \phi_{i m}\right) \sim p\left(X_{i, 0: J}, \phi_{i} \mid y_{i, 0: J} ; \widehat{\theta}_{m}\right)
$$

- Gibbs algorithm
- $p\left(\phi_{i} \mid y_{i, 0: J}, X_{i, 0: J} ; \widehat{\theta}_{m}\right)$: standard by Metropolis-Hastings
- $p\left(X_{i, 0: J} \mid y_{i, 0: J}, \phi_{i} ; \widehat{\theta}_{m}\right)$: block decomposition and iterative simulation
- \Rightarrow slow convergence of the chain
- Particle filter coupled with MCMC (PMCMC)
- [Del Moral et al, 2001; Doucet et al, 2001; Chopin, 2004; Andrieu et al, 2010]
- Metropolis Hastings algorithm targeting directly $p\left(X_{i, 0: J}, \phi_{i} \mid y_{i, 0: J} ; \widehat{\theta}_{m}\right)$

Improvement of the predictions

Meta-models: another alternative

- Complex mechanistic models
- Approximation of the solution of the model at each iteration of the estimation method
- Partial differential equation solution: difficult to obtain
- Meta-model
- Precomputation on a pre-defined grid
- Precise evaluation of the solution on the points of the grid
- Approximation
- Nearest neighborhood approximation [Barthelemy, Lavielle, submitted]
- Linear approximation on the grid [Grenier, Louvet, Vigneaux, submitted]
- Computational cost gain (PDE example) [Grenier, Louvet, Vigneaux, submitted]
- Exact SAEM: 23 days
- Interpolation with heterogeneous grid: 26 min

Conclusion

- Mechanistic models
- Mechanistic description
- Angiogenesis dynamic
- Action of molecules
- Good fitting on real data
- Need powerful statistical methods because large number of parameters/random effects
- Stochastic models
- Advantages
- Less parameters, less equations
- Allow stochastic individual variations around the deterministic theoretical model
- Improvement of the predictions
- Need specific statistical tools to filter the stochastic process
- Need large number of data \rightarrow pre-clinical data

Perspectives

- Meta-models
- Nearest neighborhood or linear approximation
- Estimation on a approximated model
- Convergence to an approximate MLE
- More sophisticated meta-models
- Gaussian process, Reproducing Kernel Hilbert space (RKHS), ...
- Convergence to the exact MLE joint work with P. Barbillon and C. Barthelemy
- Non parametric estimation
- Density of the random effects [Comte et al, 2012]
- Drift function of the stochastic model [Cattiaux et al, submitted]

