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OBJECTIVE

» Question : How to evaluate and compare dynamic predictive
accuracy of joint-models?

» Data: Cohorts of elderly people Paquid (training, n = 2970) and
3-City (validation, n = 3880)
» Dynamic prediction of dementia
» Using repeated measurements of cognitive tests

» Statistical Goal : making inference with dynamic accuracy
measures

» Estimating dynamic predictive accuracy curves
» Testing whether or not 2 curves of predictive accuracy differ
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COMPETING RISKS : MOTIVATION EXAMPLE

Dementia
(m=1

Health

/
\

Death
dementia free

(n=2)

Notations:
» T :time-to-event
» 7 : type of event

2/29



INTRODUCTION

DYNAMIC

PREDICTION ACCURACY

LARGE SAMPLE RESULTS

APPLICATION

PERSPECTIVES

COMPETING RISKS IN CANCER
Death
from cancer
(m=1
/ Notations:
Health » T :time-to-event
\ » 7 : type of event
Death
from
another cause
(n = 2)
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Landmark time “s” at which predictions are made varies, horizon “t” is fixed.
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NOTATIONS FOR POPULATION PARAMETERS

» Event-time and event-type : (T}, n;)

» Indicator of disease occurrence in (s,s + t]:
Di(s,t) =1{s < T; <s+t,m =1}

» Dynamic predictions:

mi(s,t) = PE(D,'(SJ) =1

T; > s, yi(S>7X,‘>

Pe(s <Ti <s+t,mi =1|Ti > s,Yi(s), Xi)

> Yi(s): set of marker measurements measured before time s
> Xi: baseline covariates
» ¢: estimated model parameters (from independent training data)
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PREDICTIVE ACCURACY : DISCRIMINATION

Di(S,t) Z]I{S<T1'SS+t,T],':1}

» Does a higher predicted risk really mean more likely to
experience the event ?

» How often 7;(s, t) > (s, t) and Dj(s,t) = 1, Dj(s,t) = 0 ?

Landmark time s Times+t

X

time
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DEFINITIONS OF ACCURACY: AUC(s, t)
Di(s,t) =W{s < T; <s+t,n=1}

AUC (Area under ROC curve):

AUC(s, t) = ]P’(m(s, £) > mi(s,)|Dis,£) = 1,Dj(s,£) = 0,T; > 5,T; > s)

with 7 and j two independent subjects.

» the higher the better
» Discrimination measure
» Does NOT depend on incidence in (s,s + ]
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PREDICTIVE ACCURACY : PREDICTION ERROR

Di(s,t) =M{s < T; <s+t,m =1}

» How close are the predicted risks m;(s, t) from the “true
underlying” risk of event given the available information ?

» Is it true that :

mi(s,f) = E |:D,‘(S, t)

T; > s, Vi(s), xl}

~P(s < T; <s+t,m =1|T; > s,Vils),X;) ?
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DEFINITIONS OF ACCURACY: BS(s, f)
Di(s,t) =1{s < T; <s+t,n =1}

Expected Brier Score:

BS(s,t) = E {{D(s, £ — (s, t)}le > s}

the lower the better

BS ~ Bias? + Variance
Calibration and Discrimination
Depends on incidence in (s, s + t]

vV v . v Y
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RIGHT CENSORING ISSUE

X :uncensored

Landmark time s Times+t

time

D,’(S,t):]l{S<T,‘SS+t,771':1}

10/29



INTRODUCTION DYNAMIC PREDICTION ACCURACY LARC
00000 0O000@000 0OO0C

RIGHT CENSORING ISSUE

X :uncensored
QO : censored
Landmark time s Times+t

time

D,’(S,t):]l{S<T,‘SS+t,771':1}
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RIGHT CENSORING ISSUE

X :uncensored
QO : censored
Landmark time s Times+t

—o0

time

For subject i censored within [s,s + t) the status
D,’(S,i’) = ]I{S <T;i<s+t,n= 1}

is unknown.
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NOTATIONS FOR RIGHT CENSORED OBSERVATION

Observed iid sample :

[T i fiom(, )i =1, n )

with _
T, = IIlil’l(Ti7 Ci) and 771 = A1'77i

where
» C;: censoring
» A; = 1{T; < C;}: censoring indicator.
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INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (1/2)

o~

Wi(S, t) = + +

with @(u) the Kaplan-Meier estimator of P(C > u).

Landmark time s Times+t

time

12/29



INTRODUCTION DYNAMIC PREDICTION ACCURACY LARGE SAMPLE RESULTS APPLICATION PERSPECTIVES CONCLUSION
00000 00000000 000000 000000 00

INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (1/2)

. {s < T; < s+ t}A;
Wis,p) = Hs<TissHA +
G(Tils)
with @(u) the Kaplan-Meier estimator of P(C > u).
Landmark time s Time s+t X :uncensored

O : censored

X

time
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INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (1/2)

~ ~, < . ~.
Fis. 1) = 1{s <P~_ S+ A n ]I{AT, > s+ t} N
G(Ti|s) G(s + t|s)

with @(u) the Kaplan-Meier estimator of P(C > u).

Landmark time s Times+t

X

X

time
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INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (1/2)

~ ~, < . ~.
Fis. 1) = 1{s <P~_ S+ A n ]I{AT, > s+ t} 4o
G(Tils) G(s +ts)

with @(u) the Kaplan-Meier estimator of P(C > u).

Landmark time s Times+t

l o :

X

X

time
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INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (2/2)

» Indicator of “observed disease occurrence” in (s,s + f|:
Di(s,t) =1U{s < T; < s+t =1}

(instead of D;(s, f)).
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INVERSE PROBABILITY OF CENSORING WEIGHTING
(IPCW) ESTIMATORS (2/2)

» Indicator of “observed disease occurrence” in (s,s + f|:
Di(s,t) =1U{s < T; < s+t =1}

(instead of D;(s, f)).

» Expected Brier score estimator:

ZW (s, 1) { i(s,t) — mis, t)}2

A/LI\C(S, t) similarly defined...
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ASYMPTOTIC IID REPRESENTATION
Let 6 denote either AUC or BS.

LEMMA: Assume that the censoring time C is independent of
(Ta , 71-('7 ))’ then

Vi (8(s.t) ~ 0(s.1)) = % S IR (T, 7 (s, 5,5, ) + 0, (1)
i=1

where IFy(T;, 1;, mi(s, 1), s, t) being :
» zero-mean iid terms
» easy to estimate (plugging in Nelson-Aalen & Kaplan-Meier)
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PROOF OF ASYMPTOTIC |ID REPRESENTATION

The proof consists in 3 steps:

(i) Martingale theory to account for Kaplan-Meier estimator
variability

(i) Taylor expansions to connect variability of estimated weights to
variability of the weighted sum.
— sum of non-iid terms

(iii) Hajek projection to rewrite the sum of non-iid terms as an
equivalent sum of iid-terms (U-statistic theory)
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POINTWISE CONFIDENCE INTERVAL (FIXED s)
» Asymptotic normality:

Vit(0s,t) - 0(s,1)) 25 N (0,02,)

» 95% confidence interval:

~ O
{6(55 t) izla/Z\/%}

where z;_, > is the 1 — /2 quantile of A'(0,1).

» Variance estimator:

n

~ 1 ~ o~ 2
0'3715 = E Z {|F9(Ti,77i,7Ti(S,t),S,f)}
i=1
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SIMULTANEOUS CONFIDENCE BAND OVER A SET OF
LANDMARK TIMES s € S

17/29

Mimicking Lin, et al. (Biometrika, 1994)
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SIMULTANEOUS CONFIDENCE BAND OVER A SET OF
LANDMARK TIMES s € §

Computation of qls ) by the simulation algorithm:

1. Forb=1,...,B, say B = 4000, do:
1.1 Generate {«!, ..., w5} from niid N(0,1).
1.2 Using the plug-in estimator IFy(-), compute :

n

T = sup | —— Z bIFG (T, 7, mi(s, 1), 5, 1)

sES Ust

2. Compute 4. as the 100(1 — a)th percentile of {Y?,..., T8}

17/29

Mimicking Lin, et al. (Biometrika, 1994)
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COMPARING DYNAMIC PREDICTIVE ACCURACY
CURVES (1/2)

Doing similarly with a difference in predictive accuracy of 2 dynamic
predictions 7) (-, ), = 1,2, we are able

> to test

Ho:VseS W (s, t)—0P(s,t)=0

A

M (s, t)

/Mﬁ t)

by observing whether or not the zero function is contained within the
confidence band of 0V (s, t) — 0 (s, t) versus s
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COMPARING DYNAMIC PREDICTIVE ACCURACY
CURVES (2/2)

Doing similarly with a difference in predictive accuracy of 2 dynamic
predictions 7)(-,),1 = 1,2, we are able

» to assert

VseS 0W(s,t) > 0?(s,t)

M (s, t)

0@ (s, t)

by observing whether or not the confidence band () (s, t) — ) (s, t)
versus s overlaps the zero line.
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DATA FROM 2 COHORTS OF ELDERLY SUBJECTS

» Population based studies of elderly subjects:
| No. of subjects  follow-up
training cohort: Paquid 2970 20 years
validation cohort: 3-City 3880 9 years

» Repeated measurements of 2 cognitive tests:

» Mini Mental State Examination (MMSE):
— global index of cognition

» Isaac Score Test (IST):
— evaluates speed of verbal production
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JOINT LATENT CLASS MODEL

(T,n) and Y(-) are joint by the latent class A

Latent class

unobserved

observed

time-to-event marker
and event-type trajectory

Baseline covariates: Age, Education level and Sex
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JOINT LATENT CLASS MODELING (K = 3 CLASSES)
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JOINT LATENT CLASS MODELING (K = 3 CLASSES)

» MMSE (transformed) or IST decline given class A; = g:
Yi(ti]')

Ai=g :BO + IBO,ageAGEi + BO,educEDUCi + 50,learnn{tij = O} + biO|A1:g
+ (ﬁlg + ﬁl,ageAGEi + bi1|1\;:g) X tij

+ (ﬁZg + 52,40 AGE; + bi2|A,-:g) X t,Zj +ei(tij),

with (bioja,—g» bitja,—g> bija,—¢) ~ N (0,07 B)
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JOINT LATENT CLASS MODELING (K = 3 CLASSES)

» MMSE (transformed) or IST decline given class A; = g:

Yi(tij)|a=g =Bo + Bo,ageAGE; + B0,eauc EDUC; + Bo jearn W{tij = 0} + bigja,—g
+ (ﬁlg + ﬁl,ageAGEi + bi1|1\;:g) X tij

+ (ﬁZg + 52,40 AGE; + bi2|A,-:g) X t,Zj +ei(tij),
with (bioja,—g» bitja,—g> bija,—¢) ~ N (0,07 B)

» Risk of events given class A; = g:
» dementia
)\1‘71 (t|/\i = g) = )\017g(t) exp (OcllygAGE,‘ =+ azLKEDUC,‘)
» death dementia-free

)\,‘,z(t‘A,' = g) = )\[)z,g(t) exp (Oz]z,gAGE,‘ + an JEDUC; + a32,XSEXi) .
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DESCRIPTIVE STATISTICS & RIGHT CENSORING ISSUE
t=5years,s € S ={0,05,...,4} years

No. of subjects

2000 3000 4000
|

1000

0
|

Censored in (s,s+t]

Event-free at s+t
Death dementia—free in (s,s+t]
Dementia in (s,s+t]

Landmark time "s" (years)
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DYNAMIC PREDICTION ACCURACY CURVES: AUC
t=>5years,s €S =1{0,05,...,4} years

£ s ————
S v - = 95% Conf Interval
- 95% Conf Band
X
S -
© =
L X
o 3 4 .. ..
= = eSS BN
= < - S~ [N
‘3 S £ g O
n - ~ .
2 ~ @
IST 5 2 -7t N
R £ © =0 B PR ETEN
MMSE 5 | ST TS 7N
_ o
g | o
0 T 1 T 1T T T T 1 1 T 1 T 1T T T 1
0 051 15 2 25 3 35 4 0 051 15 2 25 3 35 4
landmark time s landmark time s
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COMPARING PREDICTION ACCURACY CURVES: BS

t=>5years,s €S ={0,05,...,4} years

BS(s,t)

0.10

0.05

0.02

1 — IsT
— MMSE

I T T T T T T T 1
0 051 15 2 25 3 35 4

landmark time s

Difference in BS(s,t)

0.005

-0.005

= = 95% Conf Interval
-+ 95% Conf Band

o - ~J -
e N -
- ~
R
ERRNEN

0 051 15 2 25 3 35 4

landmark time s
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PERSPECTIVE: R?-LIKE CRITERIA

» Interpretation difficulties for s — BS(s, t) :
» Scaling meaning ?
» BS value depends on cumulative incidence in (s, s + ]
» Increase/decrease when s varies not explainable
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PERSPECTIVE: R?-LIKE CRITERIA

» Interpretation difficulties for s — BS(s, t) :
» Scaling meaning ?
» BS value depends on cumulative incidence in (s, s + ]
» Increase/decrease when s varies not explainable

» “Explained variation” criteria :

BS(s,t)

R2(s,8) =1 — -0
(5.0 BSnurr(s,t)

where BSnurr(s, t) is BS of the null model predicting the same
risk for all subjects (=cumulative incidence in (s, s + t]).

» the higher the better & easier scaling
» cumulative incidence free

26/29
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PERSPECTIVE: INFERENCE FOR R?-LIKE CRITERIA
t=>5years,s €S ={0,05,...,4}

10%
|

R%(s,t)
5%
|

— IST
— MMSE
R
S ccmc ettt
T T T T T T T T 1
25 3 3.5 4

Landmark time s (years)
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Computation of confidence regions (easy): ongoing work ...
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CONCLUSION (1/2)

» New testing approach to simultaneously compare dynamic
predictions over all times at which predictions are made

» Nonparametric methodology provides a model-free comparison.
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CONCLUSION (1/2)

» New testing approach to simultaneously compare dynamic
predictions over all times at which predictions are made

» Nonparametric methodology provides a model-free comparison.

“Essentially, all models are wrong, but
some are useful.”, G. Box

= We do not assume any correct model specification.
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CONCLUSION (2/2)

» Asymptotic results established

» Good simulation results with finite sample size (not shown)
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CONCLUSION (2/2)

» Asymptotic results established
» Good simulation results with finite sample size (not shown)

» Beyond the joint modeling framework ?

~ provide inference procedures for comparing any kind of
dynamic prediction tools

e.g : Joint modeling vs Landmarking ?
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CONCLUSION (2/2)

» Asymptotic results established
» Good simulation results with finite sample size (not shown)

» Beyond the joint modeling framework ?

~ provide inference procedures for comparing any kind of
dynamic prediction tools

e.g : Joint modeling vs Landmarking ?

"Statisticians, like artists, have the bad
habit of falling in love with their models.”,
G. Box
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CONCLUSION (2/2)

» Asymptotic results established
» Good simulation results with finite sample size (not shown)

» Beyond the joint modeling framework ?

~ provide inference procedures for comparing any kind of
dynamic prediction tools

e.g : Joint modeling vs Landmarking ?

"Statisticians, like artists, have the bad
habit of falling in love with their models.”,
G. Box

THANK YOU FOR YOUR ATTENTION! BB
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