INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

QUANTIFYING AND COMPARING DYNAMIC PREDICTIVE ACCURACY OF JOINT MODELS

for longitudinal marker and time-to-event with competing risks

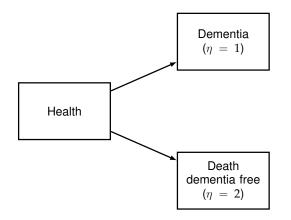
P. Blanche, C. Proust-Lima, L. Loubère, H. Jacqmin-Gadda

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

OBJECTIVE

- Question : How to evaluate and compare dynamic predictive accuracy of joint-models?
- ▶ Data: Cohorts of elderly people Paquid (training, n = 2970) and 3-City (validation, n = 3880)
 - Dynamic prediction of dementia
 - Using repeated measurements of cognitive tests
- Statistical Goal : making inference with dynamic accuracy measures
 - Estimating dynamic predictive accuracy curves
 - Testing whether or not 2 curves of predictive accuracy differ

COMPETING RISKS : MOTIVATION EXAMPLE

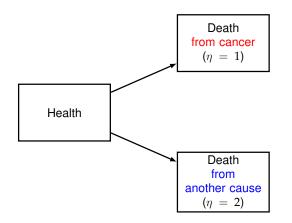


Notations:

- T : time-to-event
- η : type of event

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

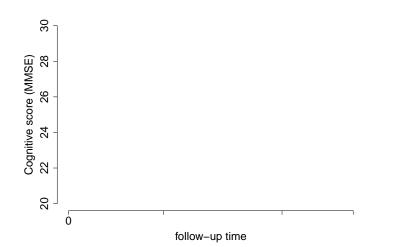
COMPETING RISKS IN CANCER



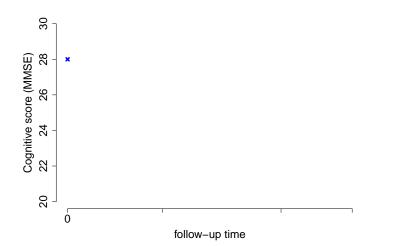
Notations:

- T : time-to-event
- η : type of event

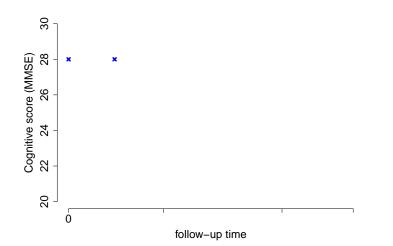
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00



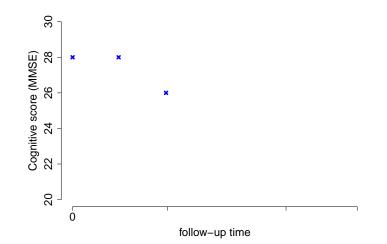
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00



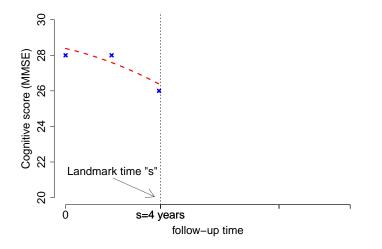
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

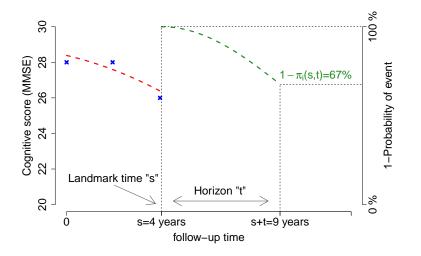


INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

Landmark time "s" at which predictions are made varies, horizon "t" is fixed.



INTRODUCTION DYNAMIC PREDIC	CTION ACCURACY LARGE SAMPL	E RESULTS APPLICATION	I PERSPECTIVES	CONCLUSION
000000	000000	000000	00	00

NOTATIONS FOR POPULATION PARAMETERS

- Event-time and event-type : (T_i, η_i)
- Indicator of disease occurrence in (s, s + t]:

$$D_i(s,t) = 1 \{ s < T_i \le s + t, \eta_i = 1 \}$$

Dynamic predictions:

$$\pi_i(s,t) = \mathbb{P}_{\widehat{\boldsymbol{\xi}}}\Big(D_i(s,t) = 1 \Big| T_i > s, \mathcal{Y}_i(s), \mathbf{X}_i\Big)$$

$$= \mathbb{P}_{\widehat{\boldsymbol{\xi}}}(s < T_i \leq s + t, \eta_i = 1 | T_i > s, \mathcal{Y}_i(s), \mathbf{X}_i)$$

- ► *Y_i*(*s*): set of marker measurements measured before time *s*
- X_i: baseline covariates
- $\hat{\boldsymbol{\xi}}$: estimated model parameters (from independent training data)

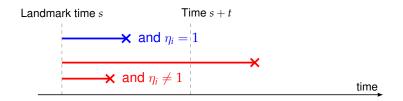
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

PREDICTIVE ACCURACY : DISCRIMINATION

$$D_i(s,t) = \mathbb{1}\{s < T_i \le s + t, \eta_i = 1\}$$

Does a higher predicted risk really mean more likely to experience the event ?

• How often $\pi_i(s,t) > \pi_i(s,t)$ and $D_i(s,t) = 1$, $D_i(s,t) = 0$?



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

DEFINITIONS OF ACCURACY: AUC(s, t)

 $D_i(s,t) = 1 \{ s < T_i \le s + t, \eta_i = 1 \}$

AUC (Area under ROC curve):

 $\mathsf{AUC}(s,t) = \mathbb{P}\Big(\pi_i(s,t) > \pi_j(s,t) \Big| D_i(s,t) = 1, D_j(s,t) = 0, T_i > s, T_j > s\Big)$

with *i* and *j* two independent subjects.

- the higher the better
- Discrimination measure
- ▶ Does NOT depend on incidence in (s, s + t]

INTRODUCTION DYNAMIC	PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000 00000	000	000000	000000	00	00

PREDICTIVE ACCURACY : PREDICTION ERROR

$$D_i(s,t) = \mathbb{1}\{s < T_i \le s + t, \eta_i = 1\}$$

- How close are the predicted risks π_i(s, t) from the "true underlying" risk of event given the available information ?
- ► Is it true that :

$$\pi_i(s,t) \approx \mathbb{E}\Big[D_i(s,t)\Big|T_i > s, \mathcal{Y}_i(s), \mathbf{X}_i\Big]$$
$$\approx \mathbb{P}\big(s < T_i \le s+t, \eta_i = 1\big|T_i > s, \mathcal{Y}_i(s), \mathbf{X}_i\big) \quad ?$$

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

DEFINITIONS OF ACCURACY: BS(s, t)

$$D_i(s,t) = \mathbb{1}\{s < T_i \le s + t, \eta_i = 1\}$$

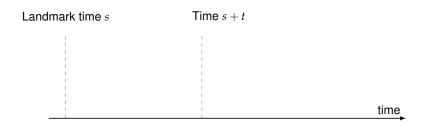
Expected Brier Score:

$$\mathbf{BS}(s,t) = \mathbb{E}\left[\left\{D(s,t) - \pi(s,t)\right\}^2 \middle| T > s\right]$$

- the lower the better
- BS \approx Bias² + Variance
- Calibration and Discrimination
- Depends on incidence in (s, s + t]

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

RIGHT CENSORING ISSUE

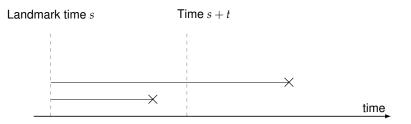


$$D_i(s,t) = 1 \{ s < T_i \le s + t, \eta_i = 1 \}$$

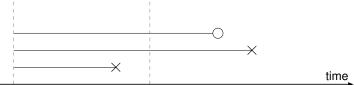
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

RIGHT CENSORING ISSUE

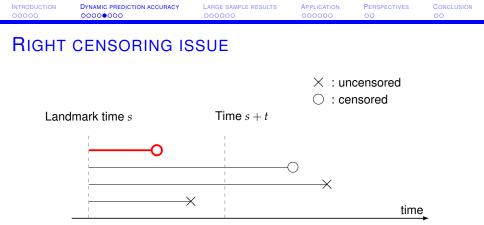
imes : uncensored



$$D_i(s,t) = \mathbb{1}\{s < T_i \le s + t, \eta_i = 1\}$$



$$D_i(s,t) = \mathbb{1}\{s < T_i \le s + t, \eta_i = 1\}$$



For subject *i* censored within [s, s + t) the status

$$D_i(s,t) = 1 \{ s < T_i \le s + t, \eta_i = 1 \}$$

is unknown.

00000 0000000 000000 00 00	INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
	00000	00000000	000000	000000	00	00

NOTATIONS FOR RIGHT CENSORED OBSERVATION

Observed iid sample :

$$\left\{\left(\widetilde{T}_i,\Delta_i,\widetilde{\eta}_i,\pi_i(\cdot,\cdot)\right),i=1,\ldots,n\right\}$$

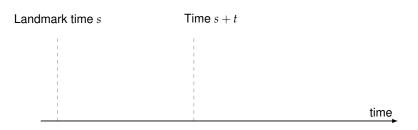
with

$$\widetilde{T}_i = \min(T_i, C_i)$$
 and $\widetilde{\eta}_i = \Delta_i \eta_i$

where

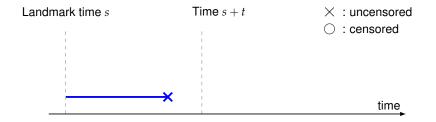
- ► *C_i*: censoring
- $\Delta_i = \mathbb{1}\{T_i \leq C_i\}$: censoring indicator.

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00



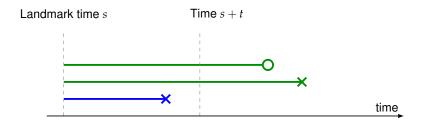
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

$$\widehat{W}_i(s,t) = \frac{\mathbbm{1}\{s < \widetilde{T}_i \le s + t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} +$$



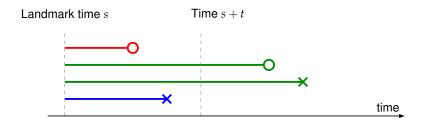
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

$$\widehat{W}_i(s,t) = \frac{1\!\!1\{s < \widetilde{T}_i \le s+t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} + \frac{1\!\!1\{\widetilde{T}_i > s+t\}}{\widehat{G}(s+t|s)} +$$



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

$$\widehat{W}_i(s,t) = \frac{1\!\!1\{s < \widetilde{T}_i \le s+t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} + \frac{1\!\!1\{\widetilde{T}_i > s+t\}}{\widehat{G}(s+t|s)} + \mathbf{0}$$



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

► Indicator of "observed disease occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = \mathbb{1}\{s < \widetilde{T}_i \le s+t, \widetilde{\eta}_i = 1\}$$

(instead of $D_i(s, t)$).

00000 000000 00000 00 00 00	INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
	00000	0000000	000000	000000	00	00

▶ Indicator of "observed disease occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = \mathbb{1}\{s < \widetilde{T}_i \le s+t, \widetilde{\eta}_i = 1\}$$

(instead of $D_i(s,t)$).

Expected Brier score estimator:

$$\widehat{BS}(s,t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{W}_i(s,t) \left\{ \widetilde{D}_i(s,t) - \pi_i(s,t) \right\}^2$$

 $\widehat{AUC}(s,t)$ similarly defined...

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	00000	000000	00	00

ASYMPTOTIC IID REPRESENTATION

Let θ denote either AUC or BS.

LEMMA: Assume that the censoring time C is independent of $(T,\eta,\pi(\cdot,\cdot)),$ then

$$\sqrt{n}\left(\widehat{\theta}(s,t) - \theta(s,t)\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathsf{IF}_{\theta}(\widetilde{T}_{i},\widetilde{\eta}_{i},\pi_{i}(s,t),s,t) + o_{p}\left(1\right)$$

where $\mathsf{IF}_{\theta}(\widetilde{T}_i, \widetilde{\eta}_i, \pi_i(s, t), s, t)$ being :

zero-mean iid terms

easy to estimate (plugging in Nelson-Aalen & Kaplan-Meier)

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	00000	000000	00	00

PROOF OF ASYMPTOTIC IID REPRESENTATION

The proof consists in 3 steps:

- (i) Martingale theory to account for Kaplan-Meier estimator variability
- (ii) Taylor expansions to connect variability of estimated weights to variability of the weighted sum.
 → sum of non-iid terms
- (iii) Hájek projection to rewrite the sum of non-iid terms as an equivalent sum of iid-terms (U-statistic theory)

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	00000	000000	00	00

POINTWISE CONFIDENCE INTERVAL (FIXED *s*)

Asymptotic normality:

$$\sqrt{n}\left(\widehat{\theta}(s,t) - \theta(s,t)\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0,\sigma_{s,t}^{2}\right)$$

► 95% confidence interval:

$$\left\{\widehat{\theta}(s,t) \pm z_{1-\alpha/2} \frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}$$

where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of $\mathcal{N}(0,1)$.

Variance estimator:

$$\widehat{\sigma}_{s,t}^2 = \frac{1}{n} \sum_{i=1}^n \left\{ \widehat{\mathsf{IF}}_{\theta}(\widetilde{T}_i, \widetilde{\eta}_i, \pi_i(s, t), s, t) \right\}^2$$

INTRODUCTION DYNAMIC PREDICTION ACCURA	ACY LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
000000 0000000	000000	000000	00	00

SIMULTANEOUS CONFIDENCE BAND OVER A SET OF LANDMARK TIMES $s \in \mathcal{S}$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

SIMULTANEOUS CONFIDENCE BAND OVER A SET OF LANDMARK TIMES $s \in S$

$$\left\{\widehat{\theta}(s,t) \pm \widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)} \frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s \in \mathcal{S}$$

Computation of $\hat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm:

$$\Upsilon^{b} = \sup_{s \in \mathcal{S}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \omega_{i}^{b} \frac{\widehat{\mathsf{F}}_{\theta}(\widetilde{T}_{i}, \widetilde{\eta}_{i}, \pi_{i}(s, t), s, t)}{\widehat{\sigma}_{s, t}} \right|$$

2. Compute $\widehat{q}_{1-\alpha}^{(\mathcal{S},t)}$ as the $100(1-\alpha)$ th percentile of $\{\Upsilon^1, \ldots, \Upsilon^B\}$

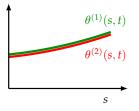
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

COMPARING DYNAMIC PREDICTIVE ACCURACY CURVES (1/2)

Doing similarly with a difference in predictive accuracy of 2 dynamic predictions $\pi^{(l)}(\cdot,t),\,l=1,2$, we are able

to test

$$\mathcal{H}_0: \forall s \in \mathcal{S} \quad \theta^{(1)}(s,t) - \theta^{(2)}(s,t) = 0$$



by observing whether or not the zero function is contained within the confidence band of $\theta^{(1)}(s,t)-\theta^{(2)}(s,t)$ versus s

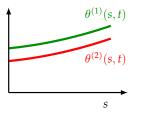
INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	00000	000000	00	00

COMPARING DYNAMIC PREDICTIVE ACCURACY CURVES (2/2)

Doing similarly with a difference in predictive accuracy of 2 dynamic predictions $\pi^{(l)}(\cdot,t),\,l=1,2$, we are able

to assert

$$\forall s \in \mathcal{S} \quad \theta^{(1)}(s,t) > \theta^{(2)}(s,t)$$



by observing whether or not the confidence band $\theta^{(1)}(s,t) - \theta^{(2)}(s,t)$ versus s overlaps the zero line.

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	00000	00	00

DATA FROM 2 COHORTS OF ELDERLY SUBJECTS

Population based studies of elderly subjects:

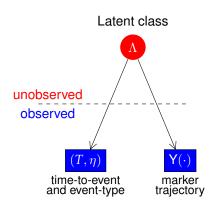
	No. of subjects	follow-up
training cohort: Paquid	2970	20 years
validation cohort: 3-City	3880	9 years

- Repeated measurements of 2 cognitive tests:
 - ► Mini Mental State Examination (MMSE): → global index of cognition
 - ► Isaac Score Test (IST): → evaluates speed of verbal production

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	00000	00	00

JOINT LATENT CLASS MODEL

 (T,η) and $\mathbf{Y}(\cdot)$ are joint by the latent class Λ



Baseline covariates: Age, Education level and Sex

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

JOINT LATENT CLASS MODELING (K = 3 CLASSES)

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

JOINT LATENT CLASS MODELING (K = 3 CLASSES)

• MMSE (transformed) or IST decline given class $\Lambda_i = g$:

$$\begin{split} Y_{i}(t_{ij})|_{\Lambda_{i}=g} = &\beta_{0} + \beta_{0,age} \mathbf{AGE}_{i} + \beta_{0,educ} \mathbf{EDUC}_{i} + \beta_{0,learn} \mathbf{1}\{t_{ij} = 0\} + b_{i0|\Lambda_{i}=g} \\ &+ \left(\beta_{1g} + \beta_{1,age} \mathbf{AGE}_{i} + b_{i1|\Lambda_{i}=g}\right) \times t_{ij} \\ &+ \left(\beta_{2g} + \beta_{2,age} \mathbf{AGE}_{i} + b_{i2|\Lambda_{i}=g}\right) \times t_{ij}^{2} + \varepsilon_{i}(t_{ij}), \end{split}$$

with $(b_{i0|\Lambda_i=g}, b_{i1|\Lambda_i=g}, b_{i2|\Lambda_i=g}) \sim \mathcal{N}(\mathbf{0}, \sigma_g^2 \mathbf{B})$

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

JOINT LATENT CLASS MODELING (K = 3 CLASSES)

• MMSE (transformed) or IST decline given class $\Lambda_i = g$:

$$\begin{aligned} Y_i(t_{ij})|_{\Lambda_i = g} &= \beta_0 + \beta_{0,age} \mathbf{AGE}_i + \beta_{0,educ} \mathbf{EDUC}_i + \beta_{0,learn} \mathbf{1}\{t_{ij} = 0\} + b_{i0|\Lambda_i = g} \\ &+ \left(\beta_{1g} + \beta_{1,age} \mathbf{AGE}_i + b_{i1|\Lambda_i = g}\right) \times t_{ij} \\ &+ \left(\beta_{2g} + \beta_{2,age} \mathbf{AGE}_i + b_{i2|\Lambda_i = g}\right) \times t_{ij}^2 + \varepsilon_i(t_{ij}), \end{aligned}$$

with $(b_{i0|\Lambda_i=g}, b_{i1|\Lambda_i=g}, b_{i2|\Lambda_i=g}) \sim \mathcal{N}(\mathbf{0}, \sigma_g^2 \mathbf{B})$

- Risk of events given class $\Lambda_i = g$:
 - dementia

$$\lambda_{i,1}(t|\mathbf{\Lambda}_i = g) = \lambda_{01,g}(t) \exp\left(\alpha_{11,g} \mathbf{AGE}_i + \alpha_{21,g} \mathbf{EDUC}_i\right)$$

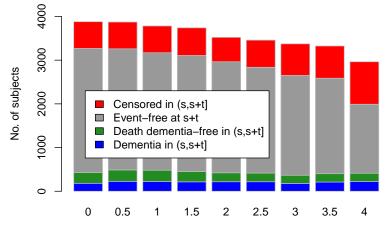
death dementia-free

 $\lambda_{i,2}(t|\Lambda_i = g) = \lambda_{02,g}(t) \exp\left(\alpha_{12,g} \mathbf{AGE}_i + \alpha_{22,g} \mathbf{EDUC}_i + \alpha_{32,g} \mathbf{SEX}_i\right).$

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

DESCRIPTIVE STATISTICS & RIGHT CENSORING ISSUE

t=5 years, $s\in\mathcal{S}=\{0,0.5,\ldots,4\}$ years

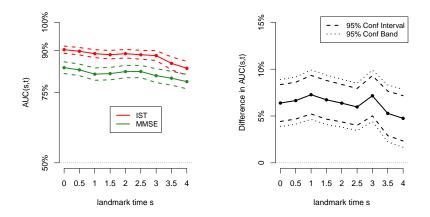


Landmark time "s" (years)

00000 0000000 000000 00000 00000 00000 0000	0

DYNAMIC PREDICTION ACCURACY CURVES: AUC

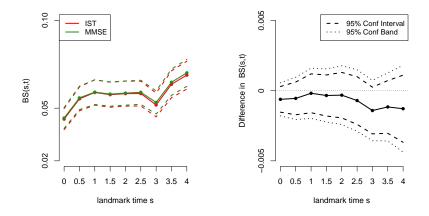
t = 5 years, $s \in \mathcal{S} = \{0, 0.5, \dots, 4\}$ years



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

COMPARING PREDICTION ACCURACY CURVES: BS

$$t=5$$
 years, $s\in\mathcal{S}=\{0,0.5,\ldots,4\}$ years



INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	•0	00

PERSPECTIVE: R^2 -LIKE CRITERIA

- Interpretation difficulties for $s \mapsto BS(s, t)$:
 - Scaling meaning ?
 - ▶ BS value depends on cumulative incidence in (s, s + t]
 - Increase/decrease when s varies not explainable

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	•0	00

PERSPECTIVE: R^2 -LIKE CRITERIA

- Interpretation difficulties for $s \mapsto BS(s, t)$:
 - Scaling meaning ?
 - ▶ BS value depends on cumulative incidence in (s, s + t]
 - Increase/decrease when s varies not explainable
- "Explained variation" criteria :

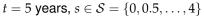
$$R^{2}(s,t) = 1 - \frac{BS(s,t)}{BS_{NULL}(s,t)}$$

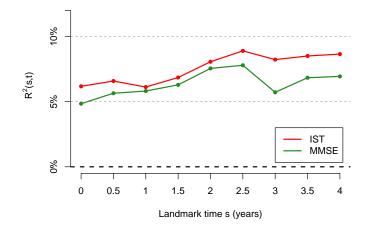
where $BS_{NULL}(s, t)$ is BS of the null model predicting the same risk for all subjects (=cumulative incidence in (s, s + t]).

- the higher the better & easier scaling
- cumulative incidence free

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

PERSPECTIVE: INFERENCE FOR R^2 -LIKE CRITERIA





Computation of confidence regions (easy): ongoing work ...

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	•0

- New testing approach to simultaneously compare dynamic predictions over all times at which predictions are made
- ► Nonparametric methodology provides a model-free comparison.

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	•0

- New testing approach to simultaneously compare dynamic predictions over all times at which predictions are made
- ► Nonparametric methodology provides a model-free comparison.

"Essentially, all models are wrong, but some are useful.", G. Box

 \Rightarrow We do not assume any correct model specification.

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

- Asymptotic results established
- Good simulation results with finite sample size (not shown)

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	0

- Asymptotic results established
- Good simulation results with finite sample size (not shown)
- Beyond the joint modeling framework ?

 \approx provide inference procedures for comparing any kind of dynamic prediction tools

e.g : Joint modeling vs Landmarking ?

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	0

- Asymptotic results established
- Good simulation results with finite sample size (not shown)
- Beyond the joint modeling framework ?

 \approx provide inference procedures for comparing any kind of dynamic prediction tools

e.g : Joint modeling vs Landmarking ?

"Statisticians, like artists, have the bad habit of falling in love with their models.", G. Box

INTRODUCTION	DYNAMIC PREDICTION ACCURACY	LARGE SAMPLE RESULTS	APPLICATION	PERSPECTIVES	CONCLUSION
00000	0000000	000000	000000	00	00

- Asymptotic results established
- Good simulation results with finite sample size (not shown)
- Beyond the joint modeling framework ?

 \approx provide inference procedures for comparing any kind of dynamic prediction tools

e.g : Joint modeling vs Landmarking ?

"Statisticians, like artists, have the bad habit of falling in love with their models.", G. Box

THANK YOU FOR YOUR ATTENTION!