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Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)

→ wellknown biomarker of prostate cancer progression

- Clinical recurrence of prostate cancer predicted using :

→ diagnosis information : initial log PSA, Gleason score and T-stage

→ last value of PSA or PSA summary (PSA doubling time)
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PSA individual trajectories
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Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)

→ wellknown biomarker of prostate cancer progression

- Clinical recurrence of prostate cancer predicted using :

→ diagnosis information : initial log PSA, Gleason score and T-stage

→ last value of PSA or PSA summary (PSA doubling time)

Problems :

- whole PSA trajectory highly associated with the risk of recurrence

- PSA = internal noisy time-dependent covariate (see Dimitris’s talk)

Solution :

→ focus on joint models for computing & evaluating dynamic prognostic tools

of prostate cancer recurrence based on the PSA trajectory
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Outline of the talk

- Principle of the joint models

- Computation of individual dynamic predictions

- Evaluation of the predictive performances

- Illustration on real data

- Prediction under scenarios of treatments

- Prediction in presence of competing risks
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Two joint modelling approaches

Latent

u

marker

    Y 

Longitudinal

   T*
  Event

structure

latent

Observed

Latent structure u :

1. marker characteristics

(current level, slope,

individual deviation,etc)

→ shared random-effect

models

Wulfsohn, 1997 ; Rizopoulos, 2010,2011,...
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Shared random-effect model (SREM) (Wulfsohn, Bcs 1997)

Homogeneous linear mixed model :

Yi(tij) = Zi(tij)
T ui + Xli(tij)

Tβ + εij

with ui ∼ N (µ, B) & εij ∼ N
`
0, σ2

ε

´

Proportional hazard model including marker trajectory characteristics :

λ(t | ui) = λ0(t)eXei(t)T δ+f (ui,β)T η

with f (ui, β) = current level, current slope, random deviation, ...

Maximum likelihood estimation
→ numerical integration over the random-effects distribution

Implemented in JM R package (Rizopoulos, JSS 2010)
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Joint latent class model (JLCM) (Lin, JASA 2002)

Latent class membership ci :

πig = P(ci = g|Xpi) =
eξ0g+Xpi

T ξ1gPG
l=1 eξ0l+XpiT ξ1l

with ξ0G = 0 & ξ1G = 0

Class-specific linear mixed model for Yi = (Yi(ti1), ..., Yi(tij), ...Yi(tini)) :

Yi(tij) |ci=g= Zi(tij)
T ui|ci=g + Xli(tij)

Tβg + εij

with ui|ci=g ∼ N
`
µg, ω2

gB
´

& εij ∼ N
`
0, σ2

ε

´

Class-specific proportional hazard model :

λ(t | ci = g) = λ0g(t)eXei(t)δg

Maximum likelihood estimation for a fixed number of classes
→ Optimal number of latent classes using the BIC, ICL, etc
Implemented in lcmm R package (Proust-Lima, SMMR 2012)
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Individual dynamic predictions

Predicted probability of event given information until s, Y(s)
i = {Yi(tij) such as tij ≤ s} :

Pi(s, t) = P(Ti ≤ s + t | Ti ≥ s, Y(s)
i , Xi)

s+ts

probability of 
    event ?

marker

0 time

repeated measures of 

the marker until time s
at diagnosis

variables known
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Computation from joint models

→ Same formula whatever the shared latent structure :

from a JLCM :

Pi(s, t) =
GX

g=1

P(Ti ≤ s + t | Ti ≥ s, ci = g, Xi; θ)P(ci = g | Ti ≥ s, Y(s)
i , Xi; θ)

from a SREM :

Pi(s, t) =

Z
ui

P(Ti ≤ s + t | Ti ≥ s, ui, Xi; θ)f (ui | Ti ≥ s, Y(s)
i , Xi; θ)dui
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Derived dynamic prognostic tool

From estimated parameters θ̂ and variance ˆV(θ̂)

For a new subject i, we know the biomarker history Y(s)
i and other covariates Xi

2 strategies :

1. Point estimate of the probability :

Pi(s, t) computed at θ̂

2. Approximation of the distribution of Pi(s, t) :

D draws θd ∼ N
“
θ̂, ˆV(θ̂)

”
Pi(s, t) computed in θd

→ median + 95% bands
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Example (with models estimated on 459 men)

For a man with a recurrence at 3.8 years
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Measures of predictive accuracy

Does the model predict well the event of interest from a prediction time s ?

- Discriminative power : AUC, Se/Sp
→ evaluates the concordance of p̂i(s, t) with the observations

(Zheng, Bcs 2007 ; Rizopoulos, Bcs 2011 ; Paul’s talk)

- Error of prediction : Brier score
→ compares directly p̂i(s, t) with the event status Υi(s + t)

(Schoop Bcs 2008 ; Proust-Lima, SMMR 2012 ; Paul’s talk)

- Prognostic information : prognostic cross-entropy (EPOCE)
→ evaluates the conditional log-density of the event given the biomarker history

(Commenges, Bcs 2012 ; Proust-Lima, SMMR 2012 ; Sène, 2013)
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Internal and External validation

On which data can we evaluate the predictiveness ?

- Training data (used for the estimation)

. Apparent measures over evaluate the predictiveness of the model (overoptimism)
→ especially important with complex models

. Correction by cross-validation (Gerds, Bcs 2007)
→ very long with complex models

. Correction by approximated cross-validation
→ direct computation - available for EPOCE (Commenges, 2012) and BS (Sène, 2013)

- Validation (external) data

. Apparent measures OK
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Expected prognostic observed cross-entropy (EPOCE) (Commenges, Bcs 2012)

From time of prediction s, EPOCE(s) = E(− ln fT|Y(s),T∗≥s | T∗ ≥ s)

Estimator on external data :

observed conditional log-likelihood of the time-to-event data from s

given the repeated measures until s : −F(θ̂; s)

Estimator on training data :

observed conditional log-likelihood corrected by approximated cross-validation :
−F(θ̂; s) + penalty

where penalty accounts for the model complexity (from likelihoods derivatives)

→ the lower the better

→ models comparison with the difference + 95% tracking interval

→ evaluation in the remaining (infinite window) or up to an horizon t
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Illustration on 459 men treated by radiation therapy (Proust-Lima, 2012)

In the JLCM

- class-specific PSA trajectory in 2 phases (short term drop / long term trend)

- class-specific Weibull baseline risk functions

- covariates in the mixed model, in the survival model & in the latent class probability

→ BIC=5068.4 for 4 classes (G=4)

In the SREM

- PSA trajectory in 2 phases (short term drop / long term trend)

- Weibull baseline risk function

- covariates in the mixed model & in the survival model

- current PSA level and current PSA slope in the survival model

→ BIC=5445.1

Standard survival model : BIC=5598.7 (G=1)
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EPOCE and difference in EPOCE on training data (N=459)
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Change in treatment in the monitoring of patients after a cancer (Sène,

2013)

Dynamic predictions assume an absence of change in the follow-up

In practice, frequent initiation of second treatments :

hormonal therapy (HT) in prostate cancer

→ changes the dynamics of the biomarker

→ changes the risk of event

Solution :

- model the initiation of second treatment (ST)

- define differential dynamic predictions according to the initiation of ST
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Differential individual dynamic predictions in patients free of HT

PSA(s)= collected PSA
until today

X= available covariates
at diagnosis

τ = time of initiation
of hormonal therapy

New patient : PSA(s), X

Has not received HT yet

?

HT initiation ?

�
�

�
�

�
�

�
�+

yes today

Probability PifHT

Q
Q

Q
Q

Q
Q

Q
Qs

not in the next t years

Probability Pif H̄T

P(Ti ≤ s + t | Ti ≥ s, τi = s, Y(s)
i , Xi) P(Ti ≤ s + t | Ti ≥ s, τi > min (Ti, s + t), Y(s)

i , Xi)
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Illustration among 2386 men treated by radiation therapy (Sène, 2013)

SREM with different natures of dependency in the survival model :

λ(t | ui) = λ0(t)eXei(t)T δ+f (ui,β,τi)
T η

- f (ui, β, τi) = current level and slope before and after HT with change of risk in τi

- f (ui, β, τi) = current level and slope before and after HT stratified before and after τi

- f (ui, β, τi) = random-effects with change of risk in τi

- ....

Differential evaluation of predictive performances :

→ In absence of HT initiation in the window of prediction :
EPOCE curve computed at different times of prediction s with an horizon of 3 years

→ After immediate initiation of HT :
EPOCE computed in each τi and averaged over τi distribution
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Predictive accuracy assessment : in absence of HT
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Predictive accuracy assessment : after immediate HT initiation
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Example of differential dynamic predictions

For a man with a recurrence at 2.7 years
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• if immediate
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Individual dynamic prediction in presence of competing events, multiple
events

Multiple sources of cancer progression :

local recurrence, metastatic recurrence, death, ...

Medical decisions differ according to the type of progression

Solution :

Extension of joint models to competing events and/or multiple events

& Individual dynamic cause-specific predictions

→ what is the probability of having (first) a local recurrence ?
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Joint models in presence of competing risks

Latent

u

marker

    Y 

Longitudinal   Event

structure

latent

Observed

   Τ∗, η

η = cause of event

Predicted probability of
event of type k
given information until s :

P(k)
i (s, t) = P(Ti ≤ s + t, η = k | Ti ≥ s, Y(s)

i , Xi)

→ derived from JLCM or SREM

→ example and evaluation in Paul’s talk
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Conclusion

Dynamic predictions :

→ derived from any joint model (and landmark analysis)

→ potentially more accurate with systematic updates

→ calculator already online : http ://psacalc.sph.umich.edu

→ caution : should be based on a large amount of data

Predictive accuracy evaluation : essential in prognostic tools development

→ over-optimism to account for in complex models (external data, cross-validation)

→ several available measures (predictive accuracy, discrimination,etc)

→ caution : best goodness-of-fit does not mean best predictive accuracy

Joint models : flexible framework for predictions

→ multiple specifications (between & within JLCM & SREM)

→ extensions to different scenarios (caution : possible indication bias in observational studies)

→ multivariate events, multivariate biomarkers
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