Dynamic predictions from joint models and their evaluation

Cécile Proust-Lima

INSERM U897, Epidemiologie et Biostatistique, Bordeaux, France Univ. Bordeaux Segalen, ISPED, Bordeaux, France

cecile.proust-lima@inserm.fr

Dynamic predictions for repeated markers and repeated events October 11th, 2013 - Bordeaux, France

Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)
 - \rightarrow wellknown biomarker of prostate cancer progression
- Clinical recurrence of prostate cancer predicted using :
 - \rightarrow diagnosis information : initial log PSA, Gleason score and T-stage
 - \rightarrow last value of PSA or PSA summary (PSA doubling time)

PSA individual trajectories

PSA individual trajectories

Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)
 - \rightarrow wellknown biomarker of prostate cancer progression
- Clinical recurrence of prostate cancer predicted using :
 - \rightarrow diagnosis information : initial log PSA, Gleason score and T-stage
 - \rightarrow last value of PSA or PSA summary (PSA doubling time)

Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)
 - \rightarrow wellknown biomarker of prostate cancer progression
- Clinical recurrence of prostate cancer predicted using :
 - \rightarrow diagnosis information : initial log PSA, Gleason score and T-stage
 - \rightarrow last value of PSA or PSA summary (PSA doubling time)

Problems :

- whole PSA trajectory highly associated with the risk of recurrence
- PSA = internal noisy time-dependent covariate (see Dimitris's talk)

Solution :

→ focus on joint models for computing & evaluating dynamic prognostic tools of prostate cancer recurrence based on the PSA trajectory

A D N A B N A B N A B N

Outline of the talk

- Principle of the joint models
- Computation of individual dynamic predictions
- Evaluation of the predictive performances
- Illustration on real data
- Prediction under scenarios of treatments
- Prediction in presence of competing risks

Two joint modelling approaches

Latent structure *u* :

3 + 4 = +

3

Two joint modelling approaches

Latent structure *u* :

 marker characteristics (current level, slope, individual deviation,etc) → shared random-effect

models

Wulfsohn, 1997; Rizopoulos, 2010,2011,...

Shared random-effect model (SREM) (Wulfsohn, Bcs 1997)

Homogeneous linear mixed model :

$$Y_i(t_{ij}) = Z_i(t_{ij})^T \boldsymbol{u}_i + X_{li}(t_{ij})^T \boldsymbol{\beta} + \epsilon_{ij}$$

with
$$u_i \sim \mathcal{N}(\mu, B) \& \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Proportional hazard model including marker trajectory characteristics :

$$\lambda(t \mid u_i) = \lambda_0(t) e^{X_{ei}(t)^T \delta + f(u_i,\beta)^T \eta}$$

with $f(u_i, \beta)$ = current level, current slope, random deviation, ...

Maximum likelihood estimation

 \rightarrow numerical integration over the random-effects distribution

Implemented in JM R package (Rizopoulos, JSS 2010)

Two joint modelling approaches

Latent structure *u* :

 marker characteristics (current level, slope, individual deviation,etc) → shared random-effect

models

Wulfsohn, 1997; Rizopoulos, 2010,2011,...

Two joint modelling approaches

Latent structure *u* :

- marker characteristics

 (current level, slope, individual deviation,etc)
 → shared random-effect models

 Wullsohn, 1997; Bizopoulos, 2010,2011....
- 2. division of the population

in homogeneous subgroups

 \rightarrow joint latent class

models

Lin, 2002 ; Proust-Lima, 2009-2012

Joint latent class model (JLCM) (Lin, JASA 2002)

Latent class membership c_i :

$$\pi_{ig} = P(c_i = g | X_{pi}) = \frac{e^{\xi_{0g} + X_{pi}^T \xi_{1g}}}{\sum_{l=1}^G e^{\xi_{0l} + X_{pi}^T \xi_{1l}}} \text{ with } \xi_{0G} = 0 \& \xi_{1G} = 0$$

Class-specific linear mixed model for $Y_i = (Y_i(t_{i1}), ..., Y_i(t_{ij}), ..., Y_i(t_{in_i}))$:

$$Y_{i}(t_{ij})|_{c_{i}=g} = Z_{i}(t_{ij})^{T} u_{i|_{c_{i}=g}} + X_{li}(t_{ij})^{T} \beta_{g} + \epsilon_{ij}$$

with $u_{i|_{c_{i}=g}} \sim \mathcal{N}(\mu_{g}, \omega_{g}^{2}B) \& \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$

Class-specific proportional hazard model :

 $\lambda(t \mid c_i = g) = \lambda_{0g}(t)e^{X_{ei}(t)\delta_g}$

Maximum likelihood estimation for a fixed number of classes \rightarrow *Optimal number of latent classes using the BIC, ICL, etc* Implemented in Icmm R package (Proust-Lima, SMMR 2012)

Individual dynamic predictions

Predicted probability of event given information until s, $Y_i^{(s)} = \{Y_i(t_{ij}) \text{ such as } t_{ij} \leq s\}$:

Computation from joint models

 \rightarrow $\;$ Same formula whatever the shared latent structure :

from a JLCM :

$$P_{i}(s,t) = \sum_{g=1}^{G} P(T_{i} \leq s+t \mid T_{i} \geq s, c_{i} = g, X_{i}; \theta) P(c_{i} = g \mid T_{i} \geq s, Y_{i}^{(s)}, X_{i}; \theta)$$

from a SREM :

$$P_i(s,t) = \int_{u_i} P(T_i \leq s+t \mid T_i \geq s, u_i, X_i; \theta) f(u_i \mid T_i \geq s, Y_i^{(s)}, X_i; \theta) du_i$$

Derived dynamic prognostic tool

From estimated parameters $\hat{\theta}$ and variance $V(\hat{\theta})$

For a new subject *i*, we know the biomarker history $Y_i^{(s)}$ and other covariates X_i

2 strategies :

- 1. Point estimate of the probability : $P_i(s, t)$ computed at $\hat{\theta}$
- 2. Approximation of the distribution of $P_i(s, t)$:

 $D \text{ draws } \theta_d \sim \mathcal{N}\left(\hat{\theta}, \hat{V(\theta)}\right)$

 $P_i(s,t)$ computed in θ_d

 \rightarrow median + 95% bands

For a man with a recurrence at 3.8 years

x PSA measures

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

For a man with a recurrence at 3.8 years

x PSA measures

Predicted probability of recurrence in the next 3 years with 95%CI :

▲ with JLCM - 4 classes

Measures of predictive accuracy

Does the model predict well the event of interest from a prediction time s?

- Discriminative power : AUC, Se/Sp
 - \rightarrow evaluates the concordance of $\hat{p}_i(s, t)$ with the observations (Zheng, Bcs 2007; Rizopoulos, Bcs 2011; Paul's talk)
- Error of prediction : Brier score
 - \rightarrow compares directly $\hat{p}_i(s, t)$ with the event status $\Upsilon_i(s + t)$ (Schoop Bcs 2008; Proust-Lima, SMMR 2012; Paul's talk)
- Prognostic information : prognostic cross-entropy (EPOCE)
 - → evaluates the conditional log-density of the event given the biomarker history (Commenges, Bcs 2012; Proust-Lima, SMMR 2012; Sène, 2013)

4 D N 4 B N 4 B N 4 B N

Internal and External validation

On which data can we evaluate the predictiveness?

- Training data (used for the estimation)
 - . Apparent measures over evaluate the predictiveness of the model (overoptimism)
 - $\rightarrow\,$ especially important with complex models
 - . Correction by cross-validation (Gerds, Bcs 2007)
 - $\rightarrow~$ very long with complex models
 - . Correction by approximated cross-validation
 - → direct computation available for EPOCE (Commenges, 2012) and BS (Sène, 2013)
- Validation (external) data
 - . Apparent measures OK

Expected prognostic observed cross-entropy (EPOCE) (Commenges, Bcs 2012)

From time of prediction s, $EPOCE(s) = E(-\ln f_{T|Y(s),T^*>s} | T^* \ge s)$

Estimator on external data :

observed conditional log-likelihood of the time-to-event data from *s* given the repeated measures until $s : -\mathcal{F}(\hat{\theta}; s)$

Estimator on training data :

observed conditional log-likelihood corrected by approximated cross-validation : $-\mathcal{F}(\hat{\theta}; s)$ + penalty

where penalty accounts for the model complexity (from likelihoods derivatives)

- \rightarrow the lower the better
- \rightarrow models comparison with the difference + 95% tracking interval
- \rightarrow evaluation in the remaining (infinite window) or up to an horizon t

・ロット (日本) (日本) (日本)

Illustration on 459 men treated by radiation therapy (Proust-Lima, 2012)

In the JLCM

- class-specific PSA trajectory in 2 phases (short term drop / long term trend)
- class-specific Weibull baseline risk functions
- covariates in the mixed model, in the survival model & in the latent class probability
- \rightarrow BIC=5068.4 for 4 classes (G=4)

In the SREM

- PSA trajectory in 2 phases (short term drop / long term trend)
- Weibull baseline risk function
- covariates in the mixed model & in the survival model
- current PSA level and current PSA slope in the survival model
- → BIC=5445.1

Standard survival model : BIC=5598.7 (G=1)

EPOCE and difference in EPOCE on training data (N=459)

Change in treatment in the monitoring of patients after a cancer (Sène, 2013)

Dynamic predictions assume an absence of change in the follow-up

In practice, frequent initiation of second treatments : hormonal therapy (HT) in prostate cancer

- \rightarrow changes the dynamics of the biomarker
- \rightarrow changes the risk of event

Solution :

- model the initiation of second treatment (ST)
- define differential dynamic predictions according to the initiation of ST

Differential individual dynamic predictions in patients free of HT

 $\begin{array}{l} \mathsf{PSA}(\mathsf{s}) = \text{collected PSA}\\ & \text{until today} \end{array}$ $\begin{array}{l} \mathsf{X} = \text{available covariates}\\ & \text{at diagnosis} \end{array}$ $\tau = \text{time of initiation}\\ & \text{of hormonal therapy} \end{array}$

Differential individual dynamic predictions in patients free of HT

$$\begin{array}{l} \mathsf{PSA}(\mathsf{s}) \texttt{=} \text{ collected PSA}\\ & \text{until today} \end{array} \\ \mathsf{X}\texttt{=} \text{ available covariates}\\ & \text{at diagnosis} \end{array} \\ \tau = \text{time of initiation} \end{array}$$

of hormonal therapy

 $P(T_i \leq s+t \mid T_i \geq s, \tau_i = s, Y_i^{(s)}, X_i)$

Differential individual dynamic predictions in patients free of HT

 $P(T_{i} \leq s+t \mid T_{i} \geq s, \tau_{i} = s, Y_{i}^{(s)}, X_{i}) \qquad P(T_{i} \leq s+t \mid T_{i} \geq s, \tau_{i} > \min(T_{i}, s+t), Y_{i}^{(s)}, X_{i})$

イロト イヨト イヨト イヨト

Illustration among 2386 men treated by radiation therapy (Sène, 2013)

SREM with different natures of dependency in the survival model :

$$\lambda(t \mid \boldsymbol{u}_i) = \lambda_0(t) e^{X_{ei}(t)^T \delta + f(\boldsymbol{u}_i, \beta, \boldsymbol{\tau}_i)^T \eta}$$

- $f(u_i, \beta, \tau_i)$ = current level and slope before and after HT with change of risk in τ_i
- $f(u_i, \beta, \tau_i)$ = current level and slope before and after HT stratified before and after τ_i
- $f(u_i, \beta, \tau_i)$ = random-effects with change of risk in τ_i

-

Illustration among 2386 men treated by radiation therapy (Sène, 2013)

SREM with different natures of dependency in the survival model :

$$\lambda(t \mid u_i) = \lambda_0(t) e^{X_{ei}(t)^T \delta + f(u_i, \beta, \tau_i)^T \eta}$$

- $f(u_i, \beta, \tau_i)$ = current level and slope before and after HT with change of risk in τ_i
- $f(u_i, \beta, \tau_i)$ = current level and slope before and after HT stratified before and after τ_i
- $f(u_i, \beta, \tau_i)$ = random-effects with change of risk in τ_i

Differential evaluation of predictive performances :

- → In absence of HT initiation in the window of prediction : EPOCE curve computed at different times of prediction *s* with an horizon of 3 years
- \rightarrow After immediate initiation of HT :

EPOCE computed in each τ_i and averaged over τ_i distribution

-

Predictive accuracy assessment : in absence of HT

Among men who did not initiate HT during the window of prediction (3y from time s)

- N

Predictive accuracy assessment : after immediate HT initiation

Cross-entropy averaged over the distribution of the times of HT

Cécile Proust-Lima (INSERM)

Dynamic predictions from joint models

GSO workshop - October 2013 24 / 29

For a man with a recurrence at 2.7 years

x PSA measures

For a man with a recurrence at 2.7 years

x PSA measures 2.0 Predicted probability × 0.8 of recurrence ence 1.5 in the next 3 years log(PSA+0.1) 0.2 0.4 0.6 Probability of recurr with 95%CI : 1.0 ▲ in absence of HT × 0.5 × × 0.0 0.0

0.0

0.5

1.0

3.0

2.0

1.5 Years since end of EBRT

2.5

For a man with a recurrence at 2.7 years

x PSA measures 2.0 Predicted probability x 0.8 of recurrence ance 1.5 in the next 3 years log(PSA+0.1) D.2 0.4 0.6 Probability of recurr with 95%CI : 1.0 ▲ in absence of HT × 0.5 If immediate × initiation of HT × 0.0 0.0

0.0

0.5

10

1.5 Years since end of EBRT 3.0

2.0

2.5

For a man with a recurrence at 2.7 years

x PSA measures 2.0 Predicted probability × 0.8 of recurrence ence 1.5 in the next 3 years log(PSA+0.1) 0.2 0.4 0.6 Probability of recurr with 95%CI : 1.0 ▲ in absence of HT × × 0.5 If immediate × initiation of HT × 0.0 0.0 0.0 0.5 2.0 2.5 3.0

1.0

1.5 Years since end of FBRT Individual dynamic prediction in presence of competing events, multiple events

Multiple sources of cancer progression :

local recurrence, metastatic recurrence, death, ...

Medical decisions differ according to the type of progression

Solution :

Extension of joint models to competing events and/or multiple events & Individual dynamic cause-specific predictions

 \rightarrow what is the probability of having (first) a local recurrence?

Joint models in presence of competing risks

 $\eta =$ cause of event

Predicted probability of event of type k given information until s :

$$P_i^{(k)}(s,t) = P(T_i \le s + t, \eta = k \mid T_i \ge s, Y_i^{(s)}, X_i)$$

 \rightarrow derived from JLCM or SREM

→ example and evaluation in Paul's talk

Conclusion

Dynamic predictions :

- \rightarrow derived from any joint model (and landmark analysis)
- \rightarrow potentially more accurate with systematic updates
- → calculator already online : http ://psacalc.sph.umich.edu
- \rightarrow caution : should be based on a large amount of data

Predictive accuracy evaluation : essential in prognostic tools development

- \rightarrow over-optimism to account for in complex models (external data, cross-validation)
- \rightarrow several available measures (predictive accuracy, discrimination,etc)
- $\rightarrow\,$ caution : best goodness-of-fit does not mean best predictive accuracy

Joint models : flexible framework for predictions

- $\rightarrow\,$ multiple specifications (between & within JLCM & SREM)
- → extensions to different scenarios (caution : possible indication bias in observational studies)
- \rightarrow multivariate events, multivariate biomarkers

< □ > < □ > < □ > < □ > < □ > < □ >

Acknowledgements and references

Collaborators : Mbéry Sène, Hélène Jacqmin-Gadda, Jeremy MG Taylor, Daniel Commenges, Paul Blanche ...

Grant : French National Institute of Cancer INCa [grant PREDYC #2010-059]

More details on :

- JLCM and prediction : Proust-Lima & Taylor (2009). Biostatistics, 10, 535-49
- JLCM, SREM and prediction : Proust-Lima, Sène, Taylor & Jacqmin-Gadda (2012). Statistical Methods in Medical Research, early view
- SREM specification and prediction : Sène, Bellera & Proust-Lima (2013) Journal Société Française de Statistique
- Differential prediction : Sène, Taylor, Jacqmin-Gadda & Proust-Lima (2013) submitted
- EPOCE : Commenges, Liquet & Proust-Lima (2012). Biometrics, 68(2), 380-7
- Calculator online : Taylor, Park, Ankerst et al. (2012). Biometrics, 69(1), 206-13

< □ > < □ > < □ > < □ > < □ > < □ >