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Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)
— wellknown biomarker of prostate cancer progression

- Clinical recurrence of prostate cancer predicted using :
— diagnosis information : initial log PSA, Gleason score and T-stage
— last value of PSA or PSA summary (PSA doubling time)
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Motivating example

Monitoring of prostate cancer progression after radiation therapy (RT) :

- Prostate Specific Antigen (PSA)
— wellknown biomarker of prostate cancer progression

- Clinical recurrence of prostate cancer predicted using :
— diagnosis information : initial log PSA, Gleason score and T-stage
— last value of PSA or PSA summary (PSA doubling time)

Problems :
- whole PSA trajectory highly associated with the risk of recurrence
- PSA = internal noisy time-dependent covariate (see Dimitris’s talk)

Solution :
— focus on joint models for computing & evaluating dynamic prognostic tools
of prostate cancer recurrence based on the PSA trajectory
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Outline of the talk

Principle of the joint models

- Computation of individual dynamic predictions

Evaluation of the predictive performances

- lllustration on real data

Prediction under scenarios of treatments

Prediction in presence of competing risks
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Two joint modelling approaches

Latent structure u : latent
structure
u

/o \___ Latent
Observed
Longitudinal Event
marker T
Y
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Two joint modelling approaches

Latent structure u : latent
structure
u

1. marker characteristics
(current level, slope,

individual deviation,etc)

— shared random-effect \__ Latent
models Observed
Wulfsohn, 1997 ; Rizopoulos, 2010,2011,...
Longitudinal Event
marker T
Y

Cécile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 7/29



Shared random-effect model (SREM) (wuitsohn, Bes 1997)

Homogeneous linear mixed model :
Yi(ty) = Zi(ty) wi + Xu(15)" B + €

with u; ~ N (p, B) & €5 ~ N (0, 02)

Proportional hazard model including marker trajectory characteristics :
At | w) = )\O(t)eX(»[(I)Téﬁ-/‘(u,-,H)Tn
with f(u;, 8) = current level, current slope, random deviation, ...

Maximum likelihood estimation
— numerical integration over the random-effects distribution

Implemented in JM R package (Rizopoulos, JSS 2010)
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Two joint modelling approaches

latent
structure
u

Latent structure u :

1. marker characteristics
(current level, slope,
individual deviation,etc)

— shared random-effect

Latent

Observed

models
Wulfsohn, 1997 ; Rizopoulos, 2010,2011,...
Longitudinal
2. division of the population ma$<er

Event
T*

in homogeneous subgroups
— joint latent class

models

Lin, 2002, Proust-Lima, 2009-2012
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Joint latent class model (JLCM) (Lin, sasA 2002)

Latent class membership ¢; :
oE0s X" €1

e = P(ci = g|Xpi) = W
=1

with &oG :0&51(; =0

Class-specific linear mixed model for ¥; = (Yi(fi), ..., Yi(t;), ... Yi(ti;)) :

Yity) leime= Zi(ty) wiy,, + Xu(15)" Be + €5

lei=¢

with u ~ N (pg, w?B) & € ~ N (0,02)

ile;=g

Class-specific proportional hazard model :

At | ¢ = g) = Ao ()e %

Maximum likelihood estimation for a fixed number of classes
— Optimal number of latent classes using the BIC, ICL, etc
Implemented in lemm R package (Proust-Lima, SMMR 2012)
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Individual dynamic predictions

Predicted probability of event given information until s, Y) = {¥:(z;) such as 7; < s} :

Pi(s,)) =P(T, <s+1|Ti >sY" X)

repeated measures of variables known

marker the marker until time s at diagnosis

probability of
event ?

- =

s+t time

0 s

Cécile Proust-Lima (INSERM) Dynamic predictions from joint models GSO workshop - October 2013 11/29



Computation from joint models

—  Same formula whatever the shared latent structure :

from a JLCM :
G
Pis,t)=> P(T;<s+1|T;>s5.c0= g, X 0)P(c; = g | Ti > 5,Y"), X, 0)
g=1
from a SREM :

Pi(s,t) = /P(T,- s+t | T > s,u, X O)f (ui | T > 5, Y, X5 0)du,

u;
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Derived dynamic prognostic tool

From estimated parameters ¢ and variance V(0)

For a new subject i, we know the biomarker history ¥ and other covariates X

2 strategies :
1. Point estimate of the probability :
P;(s, 1) computed at 6
2. Approximation of the distribution of P;i(s, ) :
D draws 0, ~ N (@, Vzé))
Pi(s,t) computed in 6,
— median + 95% bands
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Example (with models estimated on 459 men)

For a man with a recurrence at 3.8 years

x PSA measures
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Example (with models estimated on 459 men)

For a man with a recurrence at 3.8 years
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Example (with models estimated on 459 men)
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Example (with models estimated on 459 men)
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Measures of predictive accuracy

Does the model predict well the event of interest from a prediction time s ?

- Discriminative power : AUC, Se/Sp

— evaluates the concordance of p;(s, r) with the observations
(Zheng, Bes 2007 ; Rizopoulos, Bes 2011 ; Paul’s talk)

- Error of prediction : Brier score

— compares directly p(s, t) with the event status T;(s + 1)
(Schoop Bcs 2008 ; Proust-Lima, SMMR 2012 ; Paul’s talk)

- Prognostic information : prognostic cross-entropy (EPOCE)

— evaluates the conditional log-density of the event given the biomarker history
(Commenges, Bcs 2012 ; Proust-Lima, SMMR 2012 ; Séne, 2013)
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Internal and External validation

On which data can we evaluate the predictiveness ?

- Training data (used for the estimation)

. Apparent measures over evaluate the predictiveness of the model (overoptimism)
— especially important with complex models

. Correction by cross-validation (Gerds, Bcs 2007)
— very long with complex models

. Correction by approximated cross-validation
— direct computation - available for EPOCE (Commenges, 2012) and BS (Séne, 2013)

- Validation (external) data

. Apparent measures OK
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Expected prognostic observed cross-entropy (EPOCE) (Commenges, Bes 2012)

From time of prediction s, EPOCE(s) = E(—Infyy) 7«5, | T* > '5)

Estimator on external data :
observed conditional log-likelihood of the time-to-event data from s
given the repeated measures until s : —F(f; s)

Estimator on training data :

observed conditional log-likelihood corrected by approximated cross-validation :
—F(6;s) + penalty

where penalty accounts for the model complexity (from likelihoods derivatives)

— the lower the better
— models comparison with the difference + 95% tracking interval
— evaluation in the remaining (infinite window) or up to an horizon ¢
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lllustration on 459 men treated by radiation therapy (Proust-Lima, 2012)

In the JLCM

- class-specific PSA trajectory in 2 phases (short term drop / long term trend)

- class-specific Weibull baseline risk functions

- covariates in the mixed model, in the survival model & in the latent class probability
— BIC=5068.4 for 4 classes (G=4)

In the SREM

- PSA trajectory in 2 phases (short term drop / long term trend)

- Weibull baseline risk function

- covariates in the mixed model & in the survival model

- current PSA level and current PSA slope in the survival model
— BIC=5445.1

Standard survival model : BIC=5598.7 (G=1)
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EPOCE and difference in EPOCE on training data (N=459)

EPOCE estimate Difference in EPOCE estimate
=)
8 | S
s
— 0
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S
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Change in treatment in the monitoring of patients after a cancer (sene,
2013)

Dynamic predictions assume an absence of change in the follow-up

In practice, frequent initiation of second treatments :
hormonal therapy (HT) in prostate cancer

— changes the dynamics of the biomarker
— changes the risk of event

Solution :

- model the initiation of second treatment (ST)
- define differential dynamic predictions according to the initiation of ST
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Differential individual dynamic predictions in patients free of HT

New patient : PSA(s), X

Has not received HT yet

HT initiation ?

PSA(s)= collected PSA
until today
X= available covariates
at diagnosis
T = time of initiation
of hormonal therapy
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Differential individual dynamic predictions in patients free of HT

New patient : PSA(s), X

Has not received HT yet

yes today

HT initiation ?

Probability Pysr

P(Ti<s+1t|T;>s7m=sY" X)

PSA(s)= collected PSA
until today
X= available covariates
at diagnosis
T = time of initiation
of hormonal therapy
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Differential individual dynamic predictions in patients free of HT

New patient : PSA(s), X

Has not received HT yet

PSA(s)= collected PSA
until today
X= available covariates

yes today

HT initiation ?

at diagnosis
T = time of initiation
of hormonal therapy

not in the next r years

Probability Pysr

P(Ti<s+1t|T,>s7m=sY" X)

Probability Pz
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lllustration among 2386 men treated by radiation therapy (sene, 2013)

SREM with different natures of dependency in the survival model :

Nt | w) = )\O(t)eXef(t)THf(u.-,B,Ti)Tn

- f(ui, B, ) = current level and slope before and after HT with change of risk in 7;
- f(u, B8, 7) = current level and slope before and after HT stratified before and after =;
- f(u, B, i) = random-effects with change of risk in 7;
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lllustration among 2386 men treated by radiation therapy (sene, 2013)

SREM with different natures of dependency in the survival model :

Nt | w) = )\O(t)eXef(t)THf(u,-ﬂm)Tn

- f(u, 8, ) = current level and slope before and after HT with change of risk in 7;
- f(u, B8, 7) = current level and slope before and after HT stratified before and after =;
- f(u, B, i) = random-effects with change of risk in 7;

Differential evaluation of predictive performances :

— In absence of HT initiation in the window of prediction :
EPOCE curve computed at different times of prediction s with an horizon of 3 years

—  After immediate initiation of HT :
EPOCE computed in each 7; and averaged over 7; distribution
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Predictive accuracy assessment

EPOCE estimates
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Predictive accuracy assessment : after immediate HT initiation

Averaged EPOCE Differences in averaged EPOCE
o | aesocation N T levilfslggseociation
© -
S ] : Leﬁftf;?.?.eed © | — HT-stratified level&slope
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Cross-entropy averaged over the distribution of the times of HT
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Example of differential dynamic predictions

For a man with a recurrence at 2.7 years

x PSA measures

1.5 2.0

log(PSA+0.1)
1.0
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00 05 10 15 20 25 30
Years since end of EBRT
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Example of differential dynamic predictions

For a man with a recurrence at 2.7 years

x PSA measures
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Example of differential dynamic predictions

For a man with a recurrence at 2.7 years

x PSA measures
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Example of differential dynamic predictions

For a man with a recurrence at 2.7 years

x PSA measures
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Individual dynamic prediction in presence of competing events, multiple
events

Multiple sources of cancer progression :
local recurrence, metastatic recurrence, death, ...

Medical decisions differ according to the type of progression

Solution :

Extension of joint models to competing events and/or multiple events
& Individual dynamic cause-specific predictions

— what is the probability of having (first) a local recurrence ?
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Joint models in presence of competing risks

n = cause of event

latent
structure
u

Predicted probability of
event of type k
given information until s :

POGs,)=P(Ti<s+tn=k|T>s ¥ x) )\ Latent
Observed
Longitudinal
— derived from JLCM or SREM r%arker Event
Y Tem

— example and evaluation in Paul’s talk
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Conclusion

Dynamic predictions :
— derived from any joint model (and landmark analysis)
— potentially more accurate with systematic updates
— calculator already online : http :/psacalc.sph.umich.edu
— caution : should be based on a large amount of data

Predictive accuracy evaluation : essential in prognostic tools development
— over-optimism to account for in complex models (external data, cross-validation)
— several available measures (predictive accuracy, discrimination,etc)

— caution : best goodness-of-fit does not mean best predictive accuracy

Joint models : flexible framework for predictions
— multiple specifications (between & within JLCM & SREM)
— extensions to different scenarios (caution : possible indication bias in observational studies)

— multivariate events, multivariate biomarkers
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