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1.1 Introduction

e Over the last 10-15 years increasing interest in joint modeling of longitudinal and
time-to-event data (Tsiatis & Davidian, Stat. Sinica, 2004; Yu et al., Stat. Sinica, 2004)

e The majority of the biostatistics literature in this area has focused on:

> several extensions of the standard joint model, new estimation approaches, ...

e Recently joint models have been utilized to provide individualized predictions

> Rizopoulos (Biometrics, 2011); Proust-Lima and Taylor (Biostatistics, 2009);
Yu et al. (JASA, 2008)
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1.1 Introduction (cont’d)

e Goals of this talk:

> Introduce joint models
> Dynamic individualized predictions of survival probabilities;
> Study the importance of the association structure;

> Combine predictions from different joint models
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1.2 lllustrative Case Study

e Aortic Valve study: Patients who received a human tissue valve in the aortic position

> data collected by Erasmus MC (from 1987 to 2008);
77 received sub-coronary implantation; 209 received root replacement

e Outcomes of interest:
> death and re-operation — composite event

> aortic gradient

e Research Question:

> Can we utilize available aortic gradient measurements to predict
survival /re-operation
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2.1 Joint Modeling Framework

e To answer our questions of interest we need to postulate a model that relates
> the aortic gradient with

> the time to death or re-operation

e Problem: Aortic gradient measurement process is an endogenous time-dependent
covariate (Kalbfleisch and Prentice, 2002, Section 6.3)

> Endogenous (aka internal): the future path of the covariate up to any time ¢t > s
IS affected by the occurrence of an event at time point s, i.e.,

Pr{Yi(t) | Vi(s), T7 = s} # Pr{di(t) | V(s), 7 = s},

where 0 < s <t and YV;(t) = {yi(s),0 < s < t}
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2.1 Joint Modeling Framework (cont’d)
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e What is special about endogenous time-dependent covariates
> measured with error
> the complete history is not available

> existence directly related to failure status

e What if we use the Cox model?
> the association size can be severely underestimated

> true potential of the marker will be masked
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

e To account for the special features of these covariates a new class of models has been
developed

Joint Models for Longitudinal and Time-to-Event Data

e |ntuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

o Feature: Marker level is not assumed constant between visits
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

Erasmus MC

e Some notation
> 17" True time-to-death for patient ¢
> T;: Observed time-to-death for patient ¢
> 0;: Event indicator, i.e., equals 1 for true events

> y;: Longitudinal aortic gradient measurements
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2.1 Joint Modeling Framework (cont’d)

e We define a standard joint model

> |Survival Part;

where

Relative risk model

hi(t | Mi(t)) = ho(t) exp{y w; + am;(t)},

* m;(t) = the true & unobserved value of aortic gradient at time ¢
* M;(t) = {m;(s),0 < s < t}
* o quantifies the effect of aortic gradient on the risk for death/re-operation

* w; baseline covariates
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2.1 Joint Modeling Framework (cont’d)

> |Longitudinal Part:

Reconstruct M;(t) = {m;(s),0 < s < t} using y;(t) and a

mixed effects model (we focus on continuous markers)

yi(t)

where

= m;(t) + (1)

=z (B + 2 ()b +ei(t), et) ~N(0,0%,

* x;(t) and B: Fixed-effects part
* 2;(t) and b;: Random-effects part, b; ~ N (0, D)
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2.1 Joint Modeling Framework (cont’d)

e The two processes are associated = define a model for their joint distribution

e Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

plyi, Ty 6:) — / plys | b) (AT | )% S(T3 | b)) p(bs) db,

where
> b; a vector of random effects that explains the interdependencies

> p(-) density function; S(-) survival function
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3.1 Prediction Survival — Definitions

e We are interested in predicting survival probabilities for a new patient j that has
provided a set of aortic gradient measurements up to a specific time point ¢

e Example:

We consider Patients 20 and 81 from the Aortic Valve dataset

> Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded
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3.1 Prediction Survival — Definitions (cont’d)

Patient 20 | T Patient 81

10+

|Aortic Gradient (mmHg)

Follow—up Time (years)
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3.1 Prediction Survival — Definitions (cont’d)
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e More formally, we have available measurements up to time point ¢
Yi(t) ={y;(s),0 < s <t}
and we are interested in

mi(u | ) = Pe{T; >u| T > t,Y;(t),D,},

where
> where u > t, and

> D,, denotes the sample on which the joint model was fitted

Dynamic Predictions Workshop — October 11th, 2013

15/47



.. . . . Erasmus MC
3.2 Prediction Survival — Estimation

e Joint model is estimated using MCMC or maximum likelihood

e Based on the fitted model we can estimate the conditional survival probabilities
> Empirical Bayes

> fully Bayes/Monte Carlo (it allows for easy calculation of s.e.)

e For more details check:

> Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics),
Taylor et al. (2013, Biometrics)
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3.2 Prediction Survival — Estimation (cont’d)

e It is convenient to proceed using a Bayesian formulation of the problem =-
mi(u | t) can be written as

P{T, >u|T >t Yt), Dy} = / P{T; >u|T >t Yt):.0} p(0|D,) do

e The first part of the integrand using Cl

Pr{T} > u| T} >t (t);0} =

_ Sj{u ‘ Mj(uvbj>9)3‘9}
Si{t | Mi(t,b;,0);0}

Dynamic Predictions Workshop — October 11th, 2013 17/47



. : . Erasmus MC
3.2 Prediction Survival — Estimation (cont’d)

e A Monte Carlo estimate of 7;(u | t) can be obtained using the following simulation
scheme:

Step 1. draw 0 ~ [0 | D,] or 1) ~ ./\/'(é,'ﬁ)
Step 2. drawb ~ b | T > t, Vi(t), 00}

Step 3. compute 7'(' (6 (u | £) = Si{u | Mi(u, Z ) 6));9(6)}/&{15 | Mi(t,bge),ﬁ(@);e(@}

e Repeat Steps 1-3, / =1, ..., L times, where L denotes the number of Monte Carlo
samples
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3.3 Prediction Survival — lllustration

e Example:

We fit a joint model to the Aortic Valve data

e Longitudinal submodel

> fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their
interaction

> random effects: Intercept, & natural cubic splines of time (d.f.= 3)

e Survival submodel

> type of operation, age, sex + underlying aortic gradient level

> log baseline hazard approximated using B-splines

Dynamic Predictions Workshop — October 11th, 2013 19/47



. : : Erasmus MC
3.3 Prediction Survival — lllustration (cont’d)

e Based on the fitted joint model we estimate 7;(u | t) for Patients 20 and 81

e We used the fully Bayesian approach with 500 Monte Carlo samples, and we took as
estimate

mi(u|t) = Zﬂ' (u | t)

and calculated the corresponding 95% pointwise Cls
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3.3 Prediction Survival — lllustration (cont’d)

Patient 20 | T Patient 81

10+

|Aortic Gradient (mmHg)

Follow—up Time (years)
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3.3 Prediction Survival — lllustration (cont’d)
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3.3 Prediction Survival — lllustration (cont’d)
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3.3 Prediction Survival — lllustration (cont’d)
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3.3 Prediction Survival — lllustration (cont’d)
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3.3 Prediction Survival — lllustration (cont’d)
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4.1 Association Structures

e The standard joint model
‘

hi(t | Mu(t)) = ho(t) exp{y "w; + am; (1)},

vit) = m(t) + &)
=z ()3 + 2 ()b + &i(t),

where M, (t) = {m,;(s),0 < s < t}
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4.1 Association structures (cont’d)
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4.1 Association Structures (cont’d)

e The standard joint model

/

hi(t | Mi(t)) = ho(t) exp{y "w; + am;(t)},

vit) = mu(t) +&i(?)
=z (t)B+ 2 ()b + &i(t),

\

where M, (t) = {m,;(s),0 < s < t}

Is this the only option? Is this the most optimal for
prediction?
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4.3 Time-dependent Slopes

e The hazard for an event at ¢ is associated with both the current value and the slope
of the trajectory at ¢ (Ye et al.,, 2008, Biometrics):

hi(t | Mi(t)) = ho(t) exp{y " w; + cxm,(t) + aomi(t)},

where

mi(t) = Sl (15 + = ()b
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4.4 Cumulative Effects

e The hazard for an event at ¢ is associated with area under the trajectory up to t:

hi(t | M;(t)) = ho(t) exp{yTwi + a/ot m;(s) ds}

e Area under the longitudinal trajectory taken as a summary of M;(t)
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4.4 Cumulative Effects (cont’d)
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4.5 Weighted Cumulative Effects

e The hazard for an event at t is associated with the area under the weighted trajectory
up to t:

bt | M) = halt) oy T+ [ ot - symi(s) ds ),

where w(-) appropriately chosen weight function, e.g.,
> Gaussian density
> Student’s-t density

> ...
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4.6 Shared Random Effects

e The hazard for an event at ¢ is associated with the random effects of the longitudinal
submodel:

hi<t | ./\/lz(t» = h()(t) exp(vaZ- + Oszy)

Features
> time-independent (no need to approximate the survival function)

> interpretation more difficult when we use something more than random-intercepts
& random-slopes
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4.7 Parameterizations & Predictions

Patient 81

10+

J/Aortic Gradient (mmHg)

0 2 4 6 8 10
Follow—up Time (years)
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4.7 Parameterizations & Predictions (cont’d)

e Five joint models for the Aortic Valve dataset
> the same longitudinal submodel, and

> relative risk submodels

hi(t) = ho(t) exp{11Type0P, + 12Sex; + YsAge, + aym;(t)},

hi(t) = ho(t) exp{11TypeOP, + 12Sex; + v3hAge, + aym;(t) + asm(t)},

t
hi(t) = ho(t) exp{fleypeOPZ- + 2Sex; + y3Age; + 041/ mz(s)ds}
0
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4.7 Parameterizations & Predictions (cont’d)

t
hi(t) = ho(t) exp{%TypeOPZ- + 12Sex; + 3Age; + / w(t — S)?TLZ(S)CZS},
0

where w(t — s) = ¢(t — s)/{P(t) — 0.5}, with ¢(-) and O(-) the normal pdf and cdf,
respectively

hz<t) = ho(t) eXp(%TypeOPZ- + Yo5ex; + ’ygAgeZ- -+ Oélbz'() + b1 + Ckgbz'g -+ Oé4bz'4>
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4.7 Parameterizations & Predictions (cont’d)
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4.7 Parameterizations & Predictions (cont’d)

e The chosen parameterization can influence the derived predictions

> especially for the survival outcome

How to choose between the competing association
structures?
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4.7 Parameterizations & Predictions (cont’d)

e The easy answer is to employ information criteria, e.g., AIC, BIC, DIC, ...

e However, a problem is that the longitudinal information dominates the joint likelihood
= will not be sensitive enough wrt predicting survival probabilities

e In addition, thinking a bit more deeply, is the same single model the most appropriate

> for all future patients?

> for the same patient during the whole follow-up?

The most probable answer is No

Dynamic Predictions Workshop — October 11th, 2013 37/47



Erasmus M

4.8 Combining Joint Models

e To address this issue we will use Bayesian Model Averaging (BMA) ideas

e In particular, we assume M, ..., Mg
> different association structures
> different baseline covariates in the survival submodel
> different formulation of the mixed model

> ...

e Typically, this list of models will not be exhaustive
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4.8 Combining Joint Models (cont’d)

e The aim is the same as before, using the available information for a future patient j
up to time ¢, I.e.,

l>Tj‘>t

> Vi(t) = {y;(s),0 < s <t}

e We want to estimate
mi(u | t) =Pr{TF > u | T} >t,Yt),D,},

by averaging over the posited joint models
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4.8 Combining Joint Models (cont’d)

e More formally we have

K
Pr{Ts > u| Dj(t),Dn} = Y Pr(I; >u| My, Dj(t), D,) p(M; | Dj(t), Dy)
k=1

where
o Dy(t) = (T > £y,().0 < 5 < 1)
> D, = {Ea(suywz — 1,...,77,}

e The first part, Pr(1 > u | My, D;(t), D,), the same as before

> i.e., model-specific conditional survival probabilities
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4.8 Combining Joint Models (cont’d)

e Working out the marginal distribution of each competing model we found some very
attractive features of BMA,

(Dj(t) | My) p(Dy, | My) p(My,)

P
é p(D,(t) | M) p(D, | My) p(My)

p(Mk | Dj(t)apn) —

> p(D,, | M) marginal likelihood based on the available data
> p(D;(t) | Mj.) marginal likelihood based on the new data of patient j

Model weights are both patient- and
time-dependent
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4.8 Combining Joint Models (cont’d)

e For different subjects, and even for the same subject but at different times points,
different models may have higher posterior probabilities

4

Predictions better tailored to each subject than in standard
prognostic models

e In addition, the longitudinal model likelihood, which is
> hidden in p(D,, | M}), and
> is not affected by the chosen association structure

will cancel out because it is both in the numerator and denominator
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4.8 Combining Joint Models (cont’d)

e |[Example:| Based on the five fitted joint models

> we compute BMA predictions for Patient 81, and

> compare with the predictions from each individual model
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)

Patient 81
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)

Patient 81
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4.8 Combining Joint Models (cont’d)
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5. Software — |

e Software: R package JM freely available via
http://cran.r-project.org/package=JM

> it can fit a variety of joint models + many other features

> relevant to this talk: Functions survfitJM() and predict()

e More info available at:

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/
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5. Software — |l

e Software: R package JMbayes freely available via
http://cran.r-project.org/package=JMbayes

> it can fit a variety of joint models + many other features

> relevant to this talk: Functions survfitJM(), predict () and bma.combine ()
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Thank you for your attention!
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