Dynamic prognostic tools using joint models for recurrent and terminal events: Evolution after a breast cancer

A. Mauguen *, B. Rachet **, S. Mathoulin-Pélissier *, G. MacGrogan ***, A. Laurent *, V. Rondeau*

> * INSERM U897, Bordeaux ** London School, London *** Institut Bergonié, Bordeaux

Workshop 10-11 Oct. 2013. Bordeaux

Introduction

- After a breast cancer diagnosis
 - $\rightarrow \text{single or multiple events} \\ \text{(recurrences, metastases, death)}$

After a breast cancer diagnosis

- → single or multiple events (recurrences, metastases, death)
- Prediction of death
 - → clinical therapeutic decisions, and patient monitoring
 - → patient information
 - → trials : defining patient subpopulations

After a breast cancer diagnosis

- → single or multiple events (recurrences, metastases, death)
- Prediction of death
 - \rightarrow clinical therapeutic decisions, and patient monitoring
 - \rightarrow patient information
 - \rightarrow trials : defining patient subpopulations
- Account for
 - → individual characteristics
 - → tumor characteristics
 - → previous treatments
 - → evolution of longitudinal markers (*Rizopoulos*, 2011; *Proust-Lima 2009*)

Introduction: Motivating example

- Cohort of patients with operable breast cancer
- Treated in a comprehensive cancer center and followed 13.9 years (median)
- Recurrent events observed : loco-regional relapses, distant metastases; until 3 events per patient
- Hypothesis: individual covariates but also recurrent event process may improve prediction of death risk

To predict the risk of death between time t and t + h given the recurrent event process before time t in the context of joint modeling

- Recurrent events and death processes are potentially correlated
- Standard (naive) approach of Cox with time-dependent covariate only for external covariates!
- Interest :
 - investigating the strength of association between recurrent events and death
 - allows to study impact of covariates both on recurrent events and death
 - treat informative censoring by death

Joint models: some notations

- t time of prediction and h window of prediction
- D_i time of death for subject i, i = 1, ..., n
- X_{ij} time of the jth recurrence for subject i
- Z_{ij}^R and Z_i^D covariates vectors for recurrence and death
- λ_{ij}^R and λ_i^D baseline hazards for risk of recurrence or death

Joint modeling for the risk of recurrent event (disease relapses) and terminal event (death)

$$\begin{cases} \lambda_{ij}^{R}(t|u_{i}) = u_{i}\lambda_{0}^{R}(t)\exp(\beta_{1}^{\prime}Z_{ij}^{R}) \\ \lambda_{i}^{D}(t|u_{i}) = u_{i}^{\alpha}\lambda_{0}^{D}(t)\exp(\beta_{2}^{\prime}Z_{i}^{D}) \end{cases}$$

- calendar timescale (time from origin)
- $u_i \sim \Gamma(1/\theta; 1/\theta)$, i.e. $E(u_i) = 1$ and $var(u_i) = \theta$
- ullet dependency between recurrent events and death
- ullet α sense and strength of the association (more flexibility)

Liu et al. Biometrics 2004 : Rondeau et al. Biostatistics 2007

Penalized log-likelihood:

- smooth baseline hazard functions
- approximated by cubic M-splines

$$pI(\xi) = I(\xi) - \kappa_1 \int_0^\infty (\lambda_0^R(t))^{"2} dt - \kappa_2 \int_0^\infty (\lambda_0^D(t))^{"2} dt$$

With the vector of parameters : $\zeta = (\lambda_0^D(.), \lambda_0^R(.), \beta, \alpha, \theta)$ and κ_1 and κ_2 two smoothing parameters for the baseline hazard functions

Introduction

- Consider a new subject *i* free of death at time *t* (i.e. D > t), for whom we observe j recurrences before t and for whom the vector of covariates Z_{ii}^R and Z_{ii}^D are available at time of prediction
- The history of recurrences for patient *i* until time *t* is :

$$\mathcal{H}_{i}^{J}(t) = \{N_{i}^{R}(t) = J, X_{i1} < \ldots < X_{iJ} \leq t\}$$

Introduction

Distinguish **three setting** for the probability of death between t and t + h

Introduction

Setting 1: with exactly *i* recurrences before *t*

$$P^{1}(t, t + h; \xi) = P(D_{i} \leq t + h|D_{i} > t, \mathcal{H}_{i}^{J,1}(t), Z_{ij}^{R}, Z_{i}^{D}, \xi)$$

$$= \frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t + h|Z_{i}^{D}, u_{i}, \xi)](u_{i})^{J} S_{i(J+1)}^{R}(t|Z_{ij}^{R}, u_{i}, \xi)g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi)(u_{i})^{J} S_{i(J+1)}^{R}(t|Z_{ij}^{R}, u_{i}, \xi)g(u_{i})du_{i}}$$
and $\mathcal{H}_{i}^{J,1}(t) = \{N_{i}^{R}(t) = J, X_{i1} < \ldots < X_{iJ} \leq t\}$, with $X_{i0} = 0$ and

Dynamic prediction

Setting 1: with exactly *i* recurrences before *t*

$$\begin{split} P^{1}(t,t+h;\xi) &= P(D_{i} \leq t+h|D_{i} > t,\mathcal{H}_{i}^{J,1}(t),Z_{ij}^{R},Z_{i}^{D},\xi) \\ &= \frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi) - S_{i}^{D}(t+h|Z_{i}^{D},u_{i},\xi)](u_{i})^{J} S_{i(J+1)}^{R}(t|Z_{ij}^{R},u_{i},\xi)g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi)(u_{i})^{J} S_{i(J+1)}^{R}(t|Z_{ij}^{R},u_{i},\xi)g(u_{i})du_{i}} \end{split}$$

and
$$\mathcal{H}_i^{J,1}(t)=\{N_i^R(t)=J,X_{i1}<\ldots< X_{iJ}\leq t\},$$
 with $X_{i0}=0$ and $X_{i(J+1)}>t$

Example:

Introduction

"Up to now Mr Martin has developed 3 recurrences of his initial cancer, his probability of dying in the next 5 years is x%"

Exactly 3 recurrent events before t

Setting 2: with at least *i* recurrences before *t*

$$P^2(t,t+h;\xi)$$

Introduction

$$=\frac{\int_{0}^{\infty}[S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi)-S_{i}^{D}(t+h|Z_{i}^{D},u_{i},\xi)](u_{i})^{J}S_{iJ}^{R}(X_{iJ}/Z_{ij}^{R},\xi,u_{i})g(u_{i})du_{i}}{\int_{0}^{\infty}S_{i}^{D}(t|Z_{i}^{D},\xi,u_{i})(u_{i})^{J}S_{iJ}^{R}(X_{iJ}/Z_{ij}^{R},\xi,u_{i})g(u_{i})du_{i}}$$

and
$$\mathcal{H}_{i}^{J,2}(t) = \{N_{i}^{R}(t) \geq J, X_{i1} < \ldots < X_{iJ} \leq t\}$$
, with $X_{i0} = 0$

Setting 2: with at least *j* recurrences before *t*

$$P^2(t, t + h; \xi)$$

Introduction

$$=\frac{\int_{0}^{\infty}[S_{i}^{D}(t|Z_{i}^{D},u_{i},\xi)-S_{i}^{D}(t+h|Z_{i}^{D},u_{i},\xi)](u_{i})^{J}S_{iJ}^{R}(X_{iJ}/Z_{ij}^{R},\xi,u_{i})g(u_{i})du_{i}}{\int_{0}^{\infty}S_{i}^{D}(t|Z_{i}^{D},\xi,u_{i})(u_{i})^{J}S_{iJ}^{R}(X_{iJ}/Z_{ij}^{R},\xi,u_{i})g(u_{i})du_{i}}$$

and
$$\mathcal{H}_{i}^{J,2}(t) = \{N_{i}^{R}(t) \geq J, X_{i1} < \ldots < X_{iJ} \leq t\}$$
, with $X_{i0} = 0$

Example:

"Mr Martin has already developed 3 recurrences, if he is still alive in 2 years,

his probability of dying between 5 and 10 years will be x% "

Introduction

Setting 3: considering the recurrence history only in the parameters estimation

$$\begin{split} &P^{3}(t, t + h; \xi) \\ &= P(D_{i} \leq t + h | D_{i} > t, Z_{i}^{D}, \xi) \\ &= \frac{\int_{0}^{\infty} [S_{i}^{D}(t | Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t + h | Z_{i}^{D}, u_{i}, \xi)] g(u_{i}) du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t | Z_{i}^{D}, \xi, u_{i}) g(u_{i}) du_{i}} \end{split}$$

Introduction

Setting 3: considering the recurrence history only in the parameters estimation

$$P^{3}(t, t + h; \xi)$$

$$= P(D_{i} \leq t + h|D_{i} > t, Z_{i}^{D}, \xi)$$

$$= \frac{\int_{0}^{\infty} [S_{i}^{D}(t|Z_{i}^{D}, u_{i}, \xi) - S_{i}^{D}(t + h|Z_{i}^{D}, u_{i}, \xi)]g(u_{i})du_{i}}{\int_{0}^{\infty} S_{i}^{D}(t|Z_{i}^{D}, \xi, u_{i})g(u_{i})du_{i}}$$

Example:

" his probability of dying in the next 5 years is x%" " if his still alive in 5 years, his probability of dying over the next 5 years will be x%"

> Whatever the history of recurrent events before t

by Monte Carlo:

Introduction

• at each b step (b=1,...,B=1000) : $\hat{\xi} = (\widehat{\lambda_0^R(.)}, \widehat{\lambda_0^D(.)}, \widehat{\beta}, \hat{\alpha}, \hat{\theta})$ from $\mathcal{MN}(\hat{\xi}, \hat{\Sigma}_{\xi})$. estimate $P^b(t, t + h; \hat{\xi})$

 Percentile confidence interval : using the 2.5th and the 97.5th percentiles

Dynamic prediction: Error of prediction

Based on a weighted time-dependent Brier Score (IPCW error)

$$Err_{t+h} = \frac{1}{N_t} \sum_{i=1}^{N_t} [I(T_i^D > t+h) - (1-\hat{P}(t,t+h;\hat{\xi}))]^2 \hat{w}_i(t+h,\hat{G}_N(.))$$

with

Introduction

$$w_i(t+h,\hat{G}_N(.)) = \frac{I(T_i^D \le t+h)\delta_i^D}{\hat{G}_N(T_i^D)/\hat{G}_N(t)} + \frac{I(T_i^D > t+h)}{\hat{G}_N(t+h)/\hat{G}_N(t)}$$

 T_i^D = observed survival time; δ_i = event indicator N_t =patients alive and uncensored at t $\hat{G}_N(t)$ = KM estimate or adjusted Cox estimate of the censoring distribution

Validated by a 10-fold cross-validation

Brier. Monthly Weather Review 1950 - Gerds et al. Biometrical J 2006

Application

- 1067 patients
- median follow-up: 13.8 years (min=5 months)
- 330 patients died
- 362 patients with recurrent events (mean 0.40), i.e. 427 obsevations (locoregional relapses and distant metastases)

N events	0	1	2	3
Alive	600	114	20	3
Died	105	187	37	1
All	705	301	57	4

with the R package frailtypack:

(http://cran.r-project.org/web/packages/frailtypack/)

Prognostic joint model

	% of	For re	current events	F	or death
Variable	patients	HR	(95% <i>CI</i>)	HR	(95% <i>CI</i>
- Age					
]40 - 55] <i>vs</i>]55 - 84]	(36.6)	1.18	(0.92-1.51)	0.36	(0.19-0.6
[28 - 40] vs]55 - 84]	(7.7)	2.54	(1.82 - 3.56)	1.76	(0.82-3.8
- P. vasc. invas.	(26.7)	1.47	(1.15-1.88)	3.35	(1.80-6.2
- Tumor size	(22.7)	1.86	(1.47-2.37)	4.68	(2.70-8.1
$>$ 20 $\textit{vs} \leq$ 20 \textit{mm}					
 HER2 positive 	(11.2)	1.43	(1.03-1.99)	1.31	(0.62-2.7
- HR	(83.0)	0.81	(0.57-1.16)	0.23	(0.10-0.5
(+ VS -)					
- Nodes involv.	(42.3)	1.82	(1.42-2.32)	4.52	(2.43-8.4
- Grade					
II vs I	(45.7)	2.14	(1.55-2.95)	7.99	(3.39-18.8)
III vs I	(24.6)	2.21	(1.48-3.31)	10.80	(4.13-33.7
θ			1.04 (s	e=0.06)	
α		4.61 (se=0.28)			
LCV		2.04			

Recurrence history	Risk of death between 5 and 10 years		
	$P^{1}(5, 10; \hat{\xi})$	$P^2(5, 10; \hat{\xi})$	$P^{3}(5,10;\hat{\xi})$
No recurrence	10.8 (4.2)	10.8 (4.2)	12.7 (4.5)
One recurrence			
$X_{i1} = 1$	30.3 (8.9)	33.3 (8.9)	12.7 (4.5)
$X_{i1} = 2.5$	30.3 (8.9)	32.3 (8.9)	12.7 (4.5)
$X_{i1} = 4.9$	30.3 (8.9)	30.4 (8.9)	12.7 (4.5)
Two recurrences			
$X_{i1} = 1, X_{i2} = 2$	50.6 (11.4)	53.2 (11.1)	12.7 (4.5)
$X_{i1} = 2, X_{i2} = 4$	50.6 (11.4)	51.5 (11.3)	12.7 (4.5)
$X_{i1} = 4, X_{i2} = 4.9$	50.6 (11.4)	50.7 (11.4)	12.7 (4.5)
Three recurrences			
$X_{i1} = 1, X_{i2} = 2, X_{i3} = 3$	67.4 (11.9)	68.9 (11.4)	12.7 (4.5)
$X_{i1} = 1, X_{i2} = 2.5, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)
$X_{i1} = 3, X_{i2} = 4, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)

Recurrence history	Risk of death between 5 and 10 years		
	$P^{1}(5, 10; \hat{\xi})$	$P^2(5, 10; \hat{\xi})$	$P^{3}(5, 10; \hat{\xi})$
No recurrence	10.8 (4.2)	10.8 (4.2)	12.7 (4.5)
One recurrence			
$X_{i1} = 1$	30.3 (8.9)	33.3 (8.9)	12.7 (4.5)
$X_{i1} = 2.5$	30.3 (8.9)	32.3 (8.9)	12.7 (4.5)
$X_{i1} = 4.9$	30.3 (8.9)	30.4 (8.9)	12.7 (4.5)
Two recurrences			
$X_{i1} = 1, X_{i2} = 2$	50.6 (11.4)	53.2 (11.1)	12.7 (4.5)
$X_{i1} = 2, X_{i2} = 4$	50.6 (11.4)	51.5 (11.3)	12.7 (4.5)
$X_{i1} = 4, X_{i2} = 4.9$	50.6 (11.4)	50.7 (11.4)	12.7 (4.5)
Three recurrences			
$X_{i1} = 1, X_{i2} = 2, X_{i3} = 3$	67.4 (11.9)	68.9 (11.4)	12.7 (4.5)
$X_{i1} = 1, X_{i2} = 2.5, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)
$X_{i1} = 3, X_{i2} = 4, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)

Recurrence history	Risk of death between 5 and 10 years			
	$P^{1}(5, 10; \hat{\xi})$	$P^2(5, 10; \hat{\xi})$	$P^3(5, 10; \hat{\xi})$	
No recurrence	10.8 (4.2)	10.8 (4.2)	12.7 (4.5)	
One recurrence				
$X_{i1} = 1$	30.3 (8.9)	33.3 (8.9)	12.7 (4.5)	
$X_{i1} = 2.5$	30.3 (8.9)	32.3 (8.9)	12.7 (4.5)	
$X_{i1} = 4.9$	30.3 (8.9)	30.4 (8.9)	12.7 (4.5)	
Two recurrences				
$X_{i1} = 1, X_{i2} = 2$	50.6 (11.4)	53.2 (11.1)	12.7 (4.5)	
$X_{i1} = 2, X_{i2} = 4$	50.6 (11.4)	51.5 (11.3)	12.7 (4.5)	
$X_{i1} = 4, X_{i2} = 4.9$	50.6 (11.4)	50.7 (11.4)	12.7 (4.5)	
Three recurrences				
$X_{i1} = 1, X_{i2} = 2, X_{i3} = 3$	67.4 (11.9)	68.9 (11.4)	12.7 (4.5)	
$X_{i1} = 1, X_{i2} = 2.5, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)	
$X_{i1} = 3, X_{i2} = 4, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)	

Recurrence history	Risk of death between 5 and 10 years		
	$P^{1}(5, 10; \hat{\xi})$	$P^2(5, 10; \hat{\xi})$	$P^3(5,10;\hat{\xi})$
No recurrence	10.8 (4.2)	10.8 (4.2)	12.7 (4.5)
One recurrence			
$X_{i1} = 1$	30.3 (8.9)	33.3 (8.9)	12.7 (4.5)
$X_{i1} = 2.5$	30.3 (8.9)	32.3 (8.9)	12.7 (4.5)
$X_{i1} = 4.9$	30.3 (8.9)	30.4 (8.9)	12.7 (4.5)
Two recurrences			
$X_{i1} = 1, X_{i2} = 2$	50.6 (11.4)	53.2 (11.1)	12.7 (4.5)
$X_{i1}=2, X_{i2}=4$	50.6 (11.4)	51.5 (11.3)	12.7 (4.5)
$X_{i1} = 4, X_{i2} = 4.9$	50.6 (11.4)	50.7 (11.4)	12.7 (4.5)
Three recurrences			
$X_{i1} = 1, X_{i2} = 2, X_{i3} = 3$	67.4 (11.9)	68.9 (11.4)	12.7 (4.5)
$X_{i1} = 1, X_{i2} = 2.5, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)
$X_{i1} = 3, X_{i2} = 4, X_{i3} = 4.9$	67.4 (11.9)	67.5 (11.9)	12.7 (4.5)

Recurrence history	Risk of death between 5 and 15 years		
	$P^{1}(5, 15; \hat{\xi})$	$P^2(5, 15; \hat{\xi})$	$P^3(5, 15; \hat{\xi})$
No recurrence	22.7 (4.8)	22.7 (4.8)	25.6 (4.7)
One recurrence			
$X_{i1} = 1$	53.0 (6.9)	56.2 (6.3)	25.6 (4.7)
$X_{i1} = 2.5$	53.0 (6.9)	55.2 (6.5)	25.6 (4.7)
$X_{i1} = 4.9$	53.0 (6.9)	53.1 (6.9)	25.6 (4.7)
Two recurrences			
$X_{i1} = 1, X_{i2} = 2$	75.6 (6.0)	77.5 (5.4)	25.6 (4.7)
$X_{i1} = 2, X_{i2} = 4$	75.6 (6.0)	76.3 (5.8)	25.6 (4.7)
$X_{i1} = 4, X_{i2} = 4.9$	75.6 (6.0)	75.6 (6.0)	25.6 (4.7)
Three recurrences			
$X_{i1} = 1, X_{i2} = 2, X_{i3} = 3$	88.4 (4.1)	89.2 (3.7)	25.6 (4.7)
$X_{i1} = 1, X_{i2} = 2.5, X_{i3} = 4.9$	88.4 (4.1)	88.4 (4.1)	25.6 (4.7)
$X_{i1} = 3, X_{i2} = 4, X_{i3} = 4.9$	88.4 (4.1)	88.4 (4.1)	25.6 (4.7)

Death prediction for 2 particular cases

Baseline prediction: between 40 and 55 years, no peritumoral vasc. invasion, tumor size < 20 mm, HER2 -, RH +, no lymph node involv., grade II

Death prediction for 2 particular cases

Prediction time t=2 years

Death prediction for 2 particular cases

Prediction time t=5 years

Death prediction for 2 particular cases

Prediction time t=10 years

Death prediction error

Introduction

Prediction at 5 years (949 patients alive)

Prediction error

Introduction

Prediction at 5 years (949 patients alive), with 10-fold cross-validation

Prediction error

Introduction

Prediction at 5 years (267 patients alive with recurrence), with 10-fold cross-validation

Conclusion

Introduction

- Recurrent event process seems interesting to predict the risk of death, in framework of joint models
- Dynamic prediction: updated with new events
- Joint modeling gives better results than Cox model with lower prediction error
- However, the 10-fold cross-validation suggests a higher risk of over-fitting
- Conditional prediction possible, but interest is limited
- Perspective :
 - Independent external validation (See A. Mauguen poster)
 - To study the prediction of the risk of events along with the risk of death
 - Prediction using alternative models?

References

- Liu et al. (2004). Shared frailty models for recurrent events and a terminal event. *Biometrics*
- Rondeau et al. (2007). Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. *Biostatistics*
- Mauguen et al. (2013). Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models *Stat Med*
- Gerds et al. (2006). Consistent estimation of the expected brier score in general survival models with right-censored event times. *Biometrical J*
- Proust-Lima et al. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. *Biostatistics*
- Rizopoulos et al. (2011) Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics*
- Brier (1950). *Monthly weather review*
- Rondeau V, and Gonzalez, JR. (2012) FRAILTYPACK: An R package for the analysis of correlated data with frailty models using the penalized likelihood estimation. *JSS*.

http://cran.r-project.org/web/packages/frailtypack/http://cran.r-project.org/web/packages/pec/

Supported by : INCA and Institut Bergonié