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Counting processes and recurrent events
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Main Aim of analysis of recurrent events

statistical analysis (and modeling) of non-independant occurence times
of an event.

• more than one event per individual.
• interest in understanding the dependancy between times

heterogenity and risk factors (covariates observed on individuals)

• identify the covariates that influence the probability of event.
• individual prediction of probability of occurrence knowing the

characteristics of the individual

Heterogeneity and frailties

• does the intensity of events differ from individual to individual
because of covariates or past history ?

• dynamic intensity modeling versus frailty intensity modeling.
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The counting process for recurrent events

t

N(t)

1

2

3

4

T1 T2 T3 T5T4

Counting process {N(t)}t≥0

Definition of the (stochastic) intensity
with respect to a historyH(t)t>0(filtration generated by the known history) :

λ(t) = lim
dt→0

1
dt
P [N(t + dt)− N(t) = 1 |H(t−)]

λ(t)dt = E [dN(t) |H(t−)] ,
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The marginal intensity : the rate function

H(t) contains jump times and ”external covariates” Z(t),
H(t) = σ

(
N(t),T1, ...,TN(t),Z(t)

)
Note : λ(t) is a predictable process, it captures the nature of the recurrence
of events.

The rate function (ROCOF in reliability analysis)

r(t) = lim
dt→0

1
dt
P [N(t + dt)− N(t) = 1 |Z(t−)]

r(t)dt = E [dN(t) | Z(t−)] ,

Ex : (Chiang, 1968)

λ(t) = β0(t) + β1(t)Z + β2(t)N(t−)

r(t) = β0(t) + φ(β1, β2)Z + ψ(β0, β2)β2(t),
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Recall the Cox model for survival analysis

One event per subject→ Survival analysis : λ(t) = h(t)IN(t)=0

h(t) = lim
dt→0

1
dt

P (T ∈ [t, t + dt[|T > t)

regression model for covariate→Multiplicative intensity model

λ(t) = λ0(t)eβ0+β1Z1+···+βpZp 1N(t−)=0

Remark :

A dead individual is no more ”at risk”
censoring mechanism may be considered too→ ”At risk” process Y(t).
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from Cox regression for lifetimes to Andersen and Gill
intensity of counting processes

Remove The ”at risk” indicator Y(t) to remains ”at risk” after the event.

Andersen & Gill, 82

λ(t)dt = E [dN(t) |Z1, . . .Zp] = λ0(t)eβ0+β1Z1+···+βpZp dt

The points of N(t)t≥0 form a Poisson process conditionally on the
values Z1, . . .Zp.
the process intensity does no depend on the past→ not dynamic.
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Models for the intensity process in reliability analysis
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Some well known models for the intensity process

dynamic intensity : impact of occurrence of an event on the intensity
N(t-) or event times themselves ?

observed ”inter-unit” heterogenity : impact of covariates
multiplicative intensity with ”Cox-like” contribution.

unobserved ”inter-unit” heterogeneity : frailty : ? ?
it may be hard to handle both frailty and dynamic parts.

Rk : in reliability (in this talk) :

an event = failure + instantaneous maintenance/repair

the dynamic part explains the maintenance actions.
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The Poisson process with covariates

Cox regression model for recurrent events :

λ(t) = λ0(t)eβ
′Z , The Z’s may be time-dependent

λ0 usually increasing, (⇒ ageing).
eZ′β : impact of environment and/or individual heterogeneity
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The Poisson process with covariates

Cox regression model for recurrent events :
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The Poisson process with covariates

Cox regression model for recurrent events :

λ(t) = λ0(t)eβ
′Z , The Z’s may be time-dependent

λ0 usually increasing, (⇒ ageing).
eZ′β : impact of environment and/or individual heterogeneity
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A renewal process for recurrent events

RP process (perfect repairs, AGAN models) :

λ(t) = λ0(t − TN(t))eβ
′Z ,

λ0 usually increasing, λ0(0) = 0 (⇒ ageing).
the intensity uses the duration since the last event t − TN(t).
inter-arrival durations are i.i.d. random variables
dynamic intensity.

Þ

Doyen et Gaudoin (Rel. Eng. Syst. Saf. 2004) Kijima (J.Appl.Prob. 1989)
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A generalized renewal process for recurrent events

GRP process (imperfect repair, virtual age models) :

λ(t) =
(
λ0(t)− ρλ0

(
TN(t−)

))
eβ

′Z ARI1

λ(t) =
(
λ0
(
t − ρTN(t−)

))
eβ

′Z ARA1

λ0 usually increasing, λ0(0) = 0 (⇒ ageing).
ρ captures the dynamic of the reduction of intensity
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The linear extended Yule process for recurrent events

LEYP process (imperfect repair) :

λ(t) = (1 + αN(t−))λ0(t)eZ(t)′β

a dynamical component (α > 0) uses the number of previous events.
a baseline intensity λ0 (usually parameterized, λ0(., θ)).
a Cox-like regression part eZ(t)′β .
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Generalization to Pena & Hollander model

The Pena-Hollander model

λ(t) = Uρ(N(t−), α)λ0(ε(t))ψ
(

eZ(t)′β
)

a frailty component : U (non observable source of heterogeneity).
a dynamical component ρ(N(t−), α)

a baseline intensity λ0 (usually parameterized, λ0(., θ)).
a Cox-like regression part eZ(t)′β .

Remark : LEYP ⊂ Pena & Hollander
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Some useful properties for dynamic prediction
and statistical estimation for the LEYP model.



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Marginal and conditional distributions of N(t)

λ(t) = (1 + αN(t−))λ0(t; Z(t); δ, β)

Λ0(t) =
∫ t

0 λ0(s; Z(s); δ, β)ds

0 a b tN(a−) N(b)−N(a)

Truncated data Observed k failures

c

Prediction

N(c)−N(b)

N(t) ∼ NB(α−1, e−αΛ0(t))

E [N(t)] =
eαΛ0(t) − 1

α

Var [N(t)] =
eαΛ0(t)(eαΛ0(t) − 1)

α
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Marginal and conditional distributions of N(t)

0 a b tN(a−) N(b)−N(a)

Truncated data Observed k failures

c

Prediction

N(c)−N(b)

[N(b)− N(a) |N(a−) = k, Z(s), a < s < b] ∼ NB
(
α−1 + k, e−α[Λ0(b)−Λ0(a)]

)

[N(c)− N(b) |N(b−)− N(a) = k] ∼ NB
(
α−1 + k,

eαΛ0(b) − eαΛ0(a) + 1
eαΛ0(c) − eαΛ0(a) + 1

)
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The likelihood

One individual, observed on [0,T], m events at times tj (j = {1, ...m}) :

L(θ) =

 m∏
j=1

λ(tj)

× exp

− m∑
j=0

∫ t(j+1)

tj
λ(u) du


Remark : In the following, parametric assumption on the baseline +
truncated observation

λ(t) = (1 + αN(t−))δtδ−1eZ(t)′β = (1 + αN(t−))λ0(t; δ, β)

N individuals, observed on [ai, bi], i = 1 . . .N
Λ0(t) =

∫ t
0 λ0(s)ds
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Data for maximum likelihood estimation
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And : Z1, . . . ,Zp, fixed or external time-dependent covariates (no frailty)
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The likelihood

Log-likelihood for truncated data, N individuals

ln L(θ) =

N∑
i=1

( mi lnα+ ln Γ(α−1 + mi)− ln Γ(α−1)

− (α−1 + mi) ln(eαΛ0(bi;δ,β) − eαΛ0(ai;δ,β) + 1)

+

mi∑
j=1

(lnλ0(tj; δ, β) + αΛ0(tj; δ, β)) )
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Appl. on recurrent failures of water networks



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

recurrent events of failure-repair on water network pipes

SEDIF : A public drinking water service in area of Paris.

stratification : only grey cast iron pipes are considered.

21450 pipes to provide drinking water (899km linear).

failures recorded on 1996-2006 (11 years).

mean age at inclusion : 35.8 years.

mean duration of observation : 10 years.

% of units with ≥ 1 failure : 12%.

% of units with > 1 failures : 3%.
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recurrent events of failure-repair on water network pipes
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recurrent events of failure-repair on water network pipes
the length L of the pipe influences the intensity

the climate influences the intensity (time dependent)
→ X2 : air temperature average over 10-days periods.

λ(t) = (1 + αN(t−))δtδ−1eβ0+β1 ln(L)+β2X2(t)
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FIGURE : Temperature as a time-dependent covariate
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recurrent events of failure-repair on water network pipes

The results (maximum likelihood estimation)

1

deviations (std) and 95% confidence intervals. 

Parameter  Model  Estimate  Standard 

Dev.  

95% CI  

Estimate ± 1.96 std 

a   with 2X   0.96  0.078  
 

[ ]0 81 1 12. , .    

without 2X  0.98  0.079  [ ]0 82 1 13. , .    

d   with 2X  1.14  0.094  [ ]0 96 1 32. , .    

without 2X  1.11  0.094  [ ]0 93 1 30. , .    

0b   with 2X  -7.03  0.45  [ ]7 92 6 14- . ,- .    

without 2X  -7.52  0.45  [ ]8 41 6 63- . ,- .    

1b   with 2X   0.67  0.020  [ ]0 63 0 71. , .    

without 2X   0.65  0.020  [ ]0 61 0 69. , .    

2b   with 2X   -0.10 0.0.003  [ ]0 11 0 09- . ,- .    

 

The inclusion of the time-dependent covariate to the model reduces the 



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

recurrent events of failure-repair on water network pipes
Global prediction of failures on the water network
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recurrent events of failure-repair on water network pipes

individual prediction of failure on [U,V], at time T (≤ U < V) ?

at time T, use the adjusted model, the known history of the unit (age,
covariate, number of past failures) to compute the Negative Binomial
distribution for Ni(V)− Ni(U).

ranking of the sample by ordering P[Ni(V)− Ni(U)]i=1...n.

use this ranking to provide a preventive maintenance policy.

or do a graph of the Lift Curve to validate the prediction efficiency of
the model.
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Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Conclusion

many models to handle dynamic intensity of recurrent events.

the LEYP is one of them, with useful properties

semiparametric framework has not been investigated (yet)

recurrent events problems : epidemiology / biostatistics / reliability
analysis : bridges exist.

dynamic versus frailty models : a risk to badly identify dynamic
components (in fact due to frailty component) : The negative Binomial
distribution is also the marginal for Gamma mixed Poisson processes
(Poisson with Gamma frailty)



Counting processes and recurrent events The LEYP process Appl. on recurrent failures of water networks Conclusion

Thank you for your attention.
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