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Explained variation in linear regression - illustration 1
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Explained variation in linear regression - illustration 2
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Explained variation in linear regression - illustration 3
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What do we mean by explained variation

Law of total variance

Var(Y ) = E(Var(Y |X )) + Var(E(Y |X ))

In linear regression under the usual assumptions

σ2
Y = σ2

Res + σ2
Reg

The population R2 is then defined as

R2 = 1− σ2
Res

σ2
Y
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Explained variation in linear regression

R2 = 1− σ2
Res

σ2
Y

∑
(yi − ȳ)2 =

∑
(yi − ŷi)

2 +
∑

(ŷi − ȳ)2

SStot = SSres + SSreg

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2 = 1− SSres

SStot
=

SSreg

SStot

SStot

n − 1
=

SSres

n − 1
+

SSreg

n − 1
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Explained variation in linear regression

Most important: decomposition into explained and unexplained
variation!!

If you lower the unexplained part, you increase the explained part
by the same amount!
This ensures that we have a measure between 0 and 1
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Illustration of wrong ‘bad’ properties of R2
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‘Bad’ properties - dependence on distribution of X
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Misunderstanding - R2 is NOT a measure of fit
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Explained variation in survival analysis

Many measures proposed under different names

explained variation
explained randomness
prognostic value
correlation
concordance
...
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A recent paper in SiM recommends the following
measures:

Kent and O’Quigley’s

R2 =
Var(β′Z )

Var(β′Z ) + π2

6

(This is really just an approximation to Kent & O’Quigley, but ok)
Royston and Sauerbrei’s

R2 =
D2/

√
(8/π)

D2/
√

(8/π) + σ2
ε

The others are said to perform poorly.
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The recommended measures have the following
properties (among others)

They assume that the model holds everywhere
They do not allow for covariates or effects to change in time
They cannot be used with repeated events
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The authors’ recommendation is based on one
criterium

Bias under censoring
(Sounds reasonable)
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The usual simulations setup to study bias under
censoring

1 generate covariates (decide on number - often 1, distribution -
often uniform, range).

2 generate survival times, conditional on covariates under some
model, often exponential.

3 fit a model, calculate a measure (or more) on this uncensored
data.

4 generate censoring times, given a required proportion of
censoring. Censoring distribution often uniform.

5 censor survival times, fit the model, calculate the measure again.
6 see if the value of the measure on censored data is close to the

value on uncensored (on average).
7 if not - conclude bias.
8 if comparing measures - choose the one with the smallest (or no)

bias.

7 is wrong, so 8 may be wrong!
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6 see if the value of the measure on censored data is close to the

value on uncensored (on average).
7 if not - conclude bias.
8 if comparing measures - choose the one with the smallest (or no)

bias.

I’d better say: 7 doesn’t make much sense!
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Usual reporting of simulation results in papers

Table 42 : Effect of censoring

censoring

paper 0% 50%

1996 some measure 0.276 0.187
2011 some measure 0.139 41.8 % increase
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What is going on?
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What is going on?
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Why do we think that
we should get the same
value on such data?
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What is going on?
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One can study bias up
to τ , nothing else!
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Why 7 doesn’t make sense?

∫ ∞

0
S(t)dt

6=
∫ τ

0
S(t)dt

6

unbiased

6

unbiased

HHH
HHH

HHHY
biased

Estimator A B

If we have a model for S(t) and ASSUME that it holds everywhere, we
can correct B.
Some measures inherently assume that the model holds everywhere,
so they SEEM better than the others.
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Example - information gain measure

ρ2 = 1− e−E(LR), (1)

where E(LR) is

E(LR) = 2
∫

D(x)

∫ ∞
0

log
fM(t |x)

f0(t)
dFM(t |x)dG(x) (2)

If there is a time τ beyond which all the observations are censored, we
CANNOT estimate (2).

For parametric models, we replace the densities with values of S(τ |x),
for the Cox model we drop them from the likelihood.

Neither helps (of course)!

So, again, why do we think we should estimate (2) with observations
limited to τ?
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So, again, why do we think we should estimate (2) with observations
limited to τ?
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Example continued - estimation of information gain
measure

For the Cox model we used the following estimator:

Ê(LR) =
2
k

k∑
i=1

(L̂R)i .

So k (number of events), NOT n (number of cases)!
We imputed values for censored observations after tmax .

For parametric models the story is different.
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Some results on Information gain measure

Table 43 : Cox model

% censored ρ2
i se ρ2 se

90 0.43 0.12 0.44 0.04
80 0.43 0.08 0.44 0.04
70 0.44 0.05 0.44 0.04
60 0.43 0.05 0.43 0.04
50 0.45 0.04 0.45 0.04
40 0.43 0.04 0.43 0.04
30 0.43 0.04 0.43 0.04
20 0.44 0.04 0.44 0.04
10 0.44 0.04 0.44 0.04
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Things to consider

1 We need to distinguish between censoring BEFORE tmax and
after tmax where tmax is the last observed event time.

2 If we have data which are censored after certain tmax , then we can
only estimate our measures until tmax .

3 Our estimates should be unbiased (or at least consistent) until
tmax .

4 When we censor with a uniform distribution, we will always have a
maximum observable event time τ , everything beyond that is
censored. And, BTW, using exponential will not solve the problem.

5 If some measure pretends to be (or looks) unbiased on the whole
support of T , then we should be suspicious.

6 All measures (?) can be made to look unbiased on the whole
support of T .
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Criteria for choosing R2

Consistency (unbiasedness) up to τ . Most (all?) measures can be
adjusted to meet this criterium.
Expected value. And add variance of the estimator as a bonus.
Scale? Approaching 1?
Time dependent covariates and effects.
Comparability across models (includes applicability for different
models). Null model?
What about repeated events, competed risks, multi-state models?
Interpretation (explained variation?).

Once we satisfy these criteria, not many measures will be left ...
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... but at least one will
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Explained risk ranking

Rank of event under model r (M)(t)

Rank of event under perfect knowledge r (P)(t)
Rank of event without model r (0)(t)

Difference r (0)(t)− r (P)(t) needs to be explained
Difference r (0)(t)− r (M)(t) is explained

RE '
∑

t (r
(0)(t)− r (M)(t))∑

t (r (0)(t)− r (P)(t))
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Our proposal

RE =

∑
i
∫ τ

0

{(
r (0)i (t)− r (M)

i (t)
)
/Ĝit

}
dNi(t)∑

i
∫ τ

0

{(
r (0)i (t)− r (P)

i (t)
)
/Ĝit

}
dNi(t)

6
perfect

?

observed

continuous variable
] at risk
ranknull
rankperfect
rankmodel(t)
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Variance of RE - in short...

V̂ar(RE ) =

1
n2Q2(τ)2

∫ τ

0

∑
i

{(
r (0)i (t)− r (M)

i (t)
)2
/Ĝ2

it

}
λ̂i(t |Ft−)dt

− 2Q1(τ)

n2Q2(τ)3

∫ t

0

∑
i

{(
r (0)i (t)− r (M)

i (t)
)

×
(

r (0)i (t)− r (P)
i (t)

)
/Ĝ2

it

}
λ̂i(t |Ft−)dt

+
Q1(τ)2

n2Q2(τ)4

∫ τ

0

∑
i

{(
r (0)i (t)− r (P)

i (t)
)2
/Ĝ2

it

}
λ̂i(t |Ft−)dt
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Population value

RE = 2
E
{∫ τ

0 S(t)Ht (u)α(t |Ft−,u)dt
}

E
{∫ τ

0 S(t)α(t |Ft−,u)dt
} − 1,

Special cases, uncensored Cox survival, univariate X

RE = 1− 4
β

1∫
0

log
(

2eβx

1 + eβx

)
dx X ∼ U(0,1)

RE =
1
2

(
eβ − 1
eβ + 1

)
X ∼ Ber(0.5)
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Some simulations

`a variance of the RE
estimates

`a average of variance
estimates

sample size: 20→ 1000
β = 1
no censoring
100 simulation runs
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Some simulations

`a variance of the RE
estimates

`a average of variance
estimates

β : 0→ 10
sample size 250
no censoring
100 simulation runs
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Properties

1 the null model IS always the same

2 RE CAN be used with time dependent covariates or effects
3 explained variation interpretation? x

4 scale? Is the difference between 0.5 and 0.45 the same as
between 0.7 and 0.65? x

5 approaching 1? x

6 dependency on censoring? x

7 CAN be used with any model
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Some more properties

¨̂ between 0 and 1

¨̂ simple interpretation
¨̂ computationally simple
¨̂ partial RE can be easily computed
−̈ only ranks are important

¨̂

¨̂ For single episodes with time-constant effects and covariates

RE = 2(c − 1/2)
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Real data examples - Cox model

Freireich data - remission times of leukaemia patients
42 patients, 12 events
covariate: treatment (binary: 21/21)

RE = 0.374

PBC data - Mayo clinic primary biliary cirrhosis data
312 patients, 125 events
covariates: age, log bilirubin, log albumin,
presence of edema, log blood clotting time RE = 0.580

Stablein data
95 patients, 78 events
covariate: rx (binary: 48/47)

RE = 0.127
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95 patients, 78 events
covariate: rx (binary: 48/47)

RE = 0.127
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Stablein data - improving the fit

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

β = 0.22

RE = 0.127

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

su
rv

iv
al

β = 0.49

RE = 0.173

β = −1.20

Stare (SLO) RE 36 / 46



Measure in time - Stablein data

95 patients, 78 events
covariate: rx
binary: 48/47

RE = 0.127
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Measure in time - asymmetric Z

Z ∼ Γ(1
2 ,1)

β = 1
RE = 0.42
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Measure in time - asymmetric Z

Z ∼ Γ(1
2 ,1)

β = −1
RE = 0.45

dR
E
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Instead of conclusions

Can we do better than RE?
Hopefully. (ask me in a year)
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Explained variation interpretation

What is variation?

Any measure of the extent to which a distribution is not degenerate
(Nagelkerke).(

r (0)i (t)− r (P)
i (t)

)
=
(

r (0)i (t)− r (M)
i (t)

)
+
(

r (M)
i (t)− r (P)

i (t)
)
.

y
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Scale

RE :=

n∑
i=1

[rnull(ti)− rmodel(ti)]

n∑
i=1

[rnull(ti)− 1]

=

n∑
i=1

rnull(ti)

n∑
i=1

[rnull(ti)− 1]

−

n∑
i=1

rmodel(ti)

n∑
i=1

[rnull(ti)− 1]

= a + b
n∑

i=1

rmodel(ti)

RE is simply a linear function of the sum of predicted conditional ranks
of failures!

y
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Example - Cox model

Binary covariate

E(RE ) = 2p(1− p)
eβx1 − eβx2

eβx1 + eβx2

β→∞→ 2p(1− p)

β = 5.03 RE = 0.493, E(RE ) = 0.493
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Example - Cox model

Uniform covariate
β̂ RE
0.8 0.141
1.9 0.284
3.0 0.435
3.9 0.502
5.0 0.575
6.9 0.667

10.1 0.762
13.8 0.810
18.8 0.863
25.1 0.890

y
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The effect of censoring before the last observed failure

β = 1
sample size 250
100 runs Z ∼ N (0,1)
Z ∼ Unif [0,1]
Z ∼ asymmetric
◦ = censored data
• = uncensored data

Conclusion
RE does not depend on censoring before the last observed failure
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The effect of censoring at a given time

β = 1
sample size 250
100 runs Z ∼ N (0,1)
Z ∼ Unif [0,1]
Z ∼ asymmetric

Conclusion
The effect of censoring at a given time depends on the covariate
distribution. Possible solution: imputation.

y
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