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Explained variation in linear regression - illustration 1
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Explained variation in linear regression - illustration 2
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Explained variation in linear regression - illustration 3
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What do we mean by explained variation

Law of total variance
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What do we mean by explained variation

Law of total variance
Var(Y) = E(Var(Y|X)) + Var(E(Y|X))
In linear regression under the usual assumptions
02Y = UzFies =+ UzReg
The population R? is then defined as
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Explained variation in linear regression
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Explained variation in linear regression

DW=V => - 9P+ (i —y)?

SStot = SSres + SSreg
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Explained variation in linear regression
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Explained variation in linear regression

@ Most important: decomposition into explained and unexplained
variation!!
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@ If you lower the unexplained part, you increase the explained part
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Explained variation in linear regression

@ Most important: decomposition into explained and unexplained
variation!!

@ If you lower the unexplained part, you increase the explained part
by the same amount!

@ This ensures that we have a measure between 0 and 1
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lllustration of wrong ‘bad’ properties of R?

J.R. Starist. Soc. A (1984).

147, Part 1. pp. 100103 l ‘12\)

Z The Box-Wetz Criterion Versus R?
By NORMAN R. DRAPER
University of Wisconsin, USA
SUMMARY
The square of the multiple correlation coefficient in a regression fit, R?, can be made
small simply by increasing the number of repeat data points. It is argued here that R?

is misleading in such cases, and that the Box-Wetz (1973) criterion, and a simpler but
essencially equivalent criterion, are not.

Keywor

MULTIPLE CORRELATION COEFFICIENT; PURE ERROR; REGRESSION WITH LARGE
DATASETS s -mvrome s oo — -

1. INTRODUCTION
Figs 1(a) and (b) indicate two sets of data. In Fig. 1(a) there are five X locations 7=1,2,...,5
and one Y observation at each location. In Fig. 1(b), there are ten Y points at the five loc:mons
Suppose we fit a straight line to each of these two sets and the underlying model is really a
straight line. Because the additional data help to locate the true mean values at each location
more precisely, the fit must be improved. However, the R? statistic will be lower than before
indicating, it would seem, a worse fit. Why? .

! @

X X

Fig. 1. Five data sites with (a) one run, (b) ten runs, per site.

2. ARGUMENT
The reason lies in the fact that it is impossible for a fitted model to explain pure error. Suppose
we fit, by least squares, the model
Y=n+e=XB+Zy+ ¢, (1)
where X B is the part to be tested in a “test for regression” and Z ¥ represents effects such as
the mean, block variables, time trends, and so on, that we wish to eliminate from the variation in
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lllustration of wrong ‘bad’ properties of R?
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perhaps 36 or more for a regression worthy of further interpretation. With § = S, a cautious value,
this would imply that u should exceed 10 at minimum.

From (11) we see that, if v, is fixed, and if (max y; — min 7})/s remainins more or less constant
as NV is increased, a behaviour we would anticipate, then u increases as V5. (A parallel argument
shows that the observed F for regression given by increases as N — v,,,.) Thus, as .V increases, the
practical usefulness of the regression as measured by u (and F) will improve. This behaviour seems
more sensible than that of R?, in the circumstances discussed. Note also that if s* remains fixed
and p is reduced, u increases. The practical implication is that models with un-needed terms will
be rated lower than the model which has the non-significant terms removed, a result which accords
with commonsense.

Darlington (1982) provided pzmaj motivation for the analysis above; his review contains

ich imply that a, based on a large data-set-i ful-when R?-is smalt;”

wi
~'éveii if the F for regression given by is large. As explained above, it appears that the reverse is true.
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lllustration of wrong ‘bad’ properties of R?

1. R. Statist. Soc. A (1985)
148, Part 4. p. 357

Corrections

The Box-Wetz Criterion Versus R?

By NORMAN R, DRAPER
(. R. Statist. Soc. A, 147, 1984, 100-103.)

Professor J. S. Cramer has kindly pointed out an error in this note. It lies immediately after
equation (10) where my assumption that y,, can be kept fixed while the n, increase is untrue,
and so subsequent remarks about R? are now wrong.

The correct conclusion from (10) is that, approximately, R? < 0}/(0} + 0*), the right hand
side being the limit of R? as N increases, if the model is correct. For a useful regression, we would
want g,/o which measures the ratio of the spread of the n's to the spread of the errors to be
large, and we see that R? provides good information on this since, for large N,
onfo =~ RI(1 - R})%.

The behaviour of u and F is sensitive to N, however. From equation (11). if we assume the
range of the §; to he “about G0, and with s~ 0, we find u ~ N*0(o,/0)/v/s. Furthenmore
F= (N ~v,, = 1) (03/0)fv,. Thus, even if o,fo is small, observed values of u and F can be
large for large N, and may give a of the y power of the regression.
Rather than compare I with the usual pelcenlagc point, we may perhaps wish to recalibrate the
test, and this is what Box and Wetz (1973) investigated for moderate sample sizes.

Overall then, it appears that R? is a useful indicator for large data sets whereas F can be mis-
leading if used in the ardinary ways thus Darlington (1982) is right.
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‘Bad’ properties - dependence on distribution of X
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Misunderstanding - R2 is NOT a measure of fit

Stare (SLO) Re 12/46



Misunderstanding - R2 is NOT a measure of fit
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Explained variation in survival analysis

Many measures proposed under different names

@ explained variation
@ explained randomness
@ prognostic value

@ correlation

@ concordance

o
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A recent paper in SiM recommends the following
measures:
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A recent paper in SiM recommends the following
measures:

@ Kent and O’Quigley’s

2 _ Var(8'Z)
Var(8'Z) + %2

(This is really just an approximation to Kent & O’Quigley, but ok)
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A recent paper in SiM recommends the following
measures:

@ Kent and O’Quigley’s
2 Var(3'Z)
RF=————
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(This is really just an approximation to Kent & O’Quigley, but ok)
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A recent paper in SiM recommends the following
measures:

@ Kent and O’Quigley’s
2 Var(3'Z)
RF=————
Var(8'Z) + %

(This is really just an approximation to Kent & O’Quigley, but ok)
@ Royston and Sauerbrei’'s

B2 _ D?/./(8/7)
D2/.,/(8/) + o2

The others are said to perform poorly.
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The recommended measures have the following
properties (among others)

@ They assume that the model holds everywhere
@ They do not allow for covariates or effects to change in time
@ They cannot be used with repeated events
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The authors’ recommendation is based on one
criterium
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The authors’ recommendation is based on one
criterium

Bias under censoring
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The authors’ recommendation is based on one
criterium

Bias under censoring
(Sounds reasonable)
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The usual simulations setup to study bias under
censoring
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The usual simulations setup to study bias under
censoring

@ generate covariates (decide on number - often 1, distribution -
often uniform, range).
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The usual simulations setup to study bias under
censoring

@ generate covariates (decide on number - often 1, distribution -
often uniform, range).

@ generate survival times, conditional on covariates under some
model, often exponential.

© fit a model, calculate a measure (or more) on this uncensored
data.

© generate censoring times, given a required proportion of
censoring. Censoring distribution often uniform.

@ censor survival times, fit the model, calculate the measure again.

O see if the value of the measure on censored data is close to the
value on uncensored (on average).

@ if not - conclude bias.
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data.
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O see if the value of the measure on censored data is close to the
value on uncensored (on average).

@ if not - conclude bias.

Q if comparing measures - choose the one with the smallest (or no)
bias.

7 is wrong, so 8 may be wrong!
Re 18/ 46



The usual simulations setup to study bias under
censoring

@ generate covariates (decide on number - often 1, distribution -
often uniform, range).

@ generate survival times, conditional on covariates under some
model, often exponential.

© fit a model, calculate a measure (or more) on this uncensored
data.

© generate censoring times, given a required proportion of
censoring. Censoring distribution often uniform.

@ censor survival times, fit the model, calculate the measure again.

O see if the value of the measure on censored data is close to the
value on uncensored (on average).

@ if not - conclude bias.

Q if comparing measures - choose the one with the smallest (or no)
bias.

I'd better sa&: 7 doesn’t make much sense!
Re 18/46



Usual reporting of simulation results in papers

Table 42 : Effect of censoring

censoring
paper 0% 50%
1996 some measure 0.276 0.187

2011  some measure 0.139 41.8 % increase
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What is going on?

No censoring

8 - We estimate a measure
on such data. J

60 80
1 1

ﬂu

WﬂM

time
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What is going on?

Uniform censoring (50 %)

we should get the same
value on such data?

80
1

8 - % Why do we think that
=
=

|

|

time
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What is going on?

Type | censoring

8 One can study bias up
to 7, nothing else! J

80
1

60
1

40
1

20
1

time
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Why 7 doesn’t make sense?

/O ~ s(n)at
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Why 7 doesn’t make sense?
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Why 7 doesn’t make sense?
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biased

unbiased unbiased
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Why 7 doesn’t make sense?

/ooo S(tyat  + /OT S(t)dt

biased

unbiased unbiased

Estimator A B

If we have a model for S(t) and ASSUME that it holds everywhere, we

can correct B.
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Why 7 doesn’t make sense?

/Ooo S(tat £ /OT S(t)at J

biased

unbiased unbiased

Estimator A B

If we have a model for S(t) and ASSUME that it holds everywhere, we

can correct B.
Some measures inherently assume that the model holds everywhere,

so they SEEM better than the others.
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Example - information gain measure

p

ALY X

where E(LR) is
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Example - information gain measure

R —1_ g ELA)

where E(LR) is

/ / "X) dF(tX)dG(x) @)

If there is a time 7 beyond which all the observations are censored, we
CANNOT estimate (2).
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Example - information gain measure

where E(LR) is

/ / "X) dF(tX)dG(x) @)

If there is a time 7 beyond which all the observations are censored, we
CANNOT estimate (2).

For parametric models, we replace the densities with values of S(7|x),
for the Cox model we drop them from the likelihood.
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Example - information gain measure

where E(LR) is

/ / "X) dF(tX)dG(x) @)

If there is a time 7 beyond which all the observations are censored, we
CANNOT estimate (2).

For parametric models, we replace the densities with values of S(7|x),
for the Cox model we drop them from the likelihood.

Neither helps (of course)!

So, again, why do we think we should estimate (2) with observations
limited to 77
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Example continued - estimation of information gain
measure
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Example continued - estimation of information gain
measure

For the Cox model we used the following estimator:

. ok
E(LR) = > (LR);.
i=1
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Example continued - estimation of information gain
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For the Cox model we used the following estimator:

. ok
E(LR) = > (LR);.
i=1

So k (number of events), NOT n (number of cases)!
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Example continued - estimation of information gain
measure

For the Cox model we used the following estimator:

. ok
E(LR) = > (LR);.
i=1

So k (number of events), NOT n (number of cases)!
We imputed values for censored observations after tnax.
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Example continued - estimation of information gain
measure

For the Cox model we used the following estimator:

. ok
E(LR) = > (LR);.
i=1

So k (number of events), NOT n (number of cases)!
We imputed values for censored observations after tnax.

For parametric models the story is different.
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Some results on Information gain measure

Stare (SLO)

Table 43 : Cox model

% censored p¢ se  p°  se

90 0.43 0.12 0.44 0.04
80 0.43 0.08 0.44 0.04
70 0.44 0.05 0.44 0.04
60 0.43 0.05 0.43 0.04
50 0.45 0.04 0.45 0.04
40 0.43 0.04 043 0.04
30 0.43 0.04 0.43 0.04
20 0.44 0.04 0.44 0.04

10 0.44 0.04 0.44 0.04

Re
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Things to consider
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Things to consider

@ We need to distinguish between censoring BEFORE t2¢ and
after tmax Where tmax is the last observed event time.
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after tmax Where tmax is the last observed event time.

@ If we have data which are censored after certain tnax, then we can
only estimate our measures until 4.
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Things to consider

@ We need to distinguish between censoring BEFORE t2¢ and
after tmax Where tnax is the last observed event time.

© If we have data which are censored after certain ty,y, then we can
only estimate our measures until 4.

© Our estimates should be unbiased (or at least consistent) until
tmax-

© When we censor with a uniform distribution, we will always have a
maximum observable event time 7, everything beyond that is
censored. And, BTW, using exponential will not solve the problem.

@ If some measure pretends to be (or looks) unbiased on the whole
support of T, then we should be suspicious.

© All measures (?) can be made to look unbiased on the whole
support of T.
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Criteria for choosing R?

@ Consistency (unbiasedness) up to . Most (all?) measures can be
adjusted to meet this criterium.

@ Expected value. And add variance of the estimator as a bonus.
@ Scale? Approaching 17?
@ Time dependent covariates and effects.

@ Comparability across models (includes applicability for different
models). Null model?

@ What about repeated events, competed risks, multi-state models?
@ Interpretation (explained variation?).

Once we satisfy these criteria, not many measures will be left ...
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... but at least one will

BIOMETRICS 67, 750-759 DOI: 10.1111/j.1541-0420.2010.01526.x
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Explained risk ranking

Rank of event under model riM(t)
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Explained risk ranking

Rank of event under model riM(t)
Rank of event under perfect knowledge r(P)(t)
Rank of event without model rO(t)

Difference r(®(t) — r(P)(t) needs to be explained
Difference r(0(t) — riM)(t) is explained
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Our proposal
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Our proposal

continuous variable
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Variance of Rg - in short...

Var(Rg) =
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Population value

E{fO Hz U)OL(”?{ R dt}

RE = 1,
E E{f0 a(t|Z:_, u)at}

Special cases, uncensored Cox survival, univariate X

1
4 265X
0
1

6_
Re =5 (e—1> X ~ Ber(0.5)
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Some simulations

- variance of the Rg
estimates

- average of variance

estimates

sample size: 20 — 1000
B=1

no censoring

100 simulation runs

nnnnn

il

asymmetric
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Some simulations

nnnnn I uniform asymmetric

- variance of the Rg

estimates 2 ”
- average of variance ] /o /o é/i
estimates ) f f U %/
B: 010 /%/ /%/ /
sample size 250 g_%/% g_%/‘} g_%/{/
no censoring o002 1255 oo 1255 1 oom 1258
100 simulation runs -
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Properties

@ the null model IS always the same
© Re CAN be used with time dependent covariates or effects
© explained variation interpretation?

© scale? Is the difference between 0.5 and 0.45 the same as
between 0.7 and 0.65?

© approaching 1?
© dependency on censoring?
@ CAN be used with any model
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Some more properties
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Some more properties

-~ between 0 and 1

= simple interpretation

2 computationally simple

2 partial Re can be easily computed

~ only ranks are important =

-~ For single episodes with time-constant effects and covariates

Re = 2(c — 1/2)
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Real data examples - Cox model
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Freireich data - remission times of leukaemia patients

42 patients, 12 events

covariate: treatment (binary: 21/21)
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Real data examples - Cox model

Freireich data - remission times of leukaemia patients

42 patients, 12 events

covariate: treatment (binary: 21/21)
Re =0.374

PBC data - Mayo clinic primary biliary cirrhosis data

312 patients, 125 events

covariates: age, log bilirubin, log albumin,

presence of edema, log blood clotting time Re = 0.580

Stablein data

95 patients, 78 events

covariate: rx (binary: 48/47)
Re = 0.127
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Stablein data - improving the fit
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B=0.22

Re = 0.127
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Measure in time - Stablein data

95 patients, 78 events 7
covariate: rx oz
binary: 48/47 S

Re =0.127 31

T T T
0 200 400 600 800 1000 1200 1400
time
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Measure in time - asymmetric Z

0.8 1.0

dRe(t)
0.6

Z~T($,1) 3
B = g
Re = 0.42 :
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L
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Measure in time - asymmetric Z
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Instead of conclusions
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Instead of conclusions

@ Can we do better than Rg?
@ Hopefully. (ask me in a year)
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Explained variation interpretation

What is variation?
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Explained variation interpretation

What is variation?

Any measure of the extent to which a distribution is not degenerate
(Nagelkerke).
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Explained variation interpretation

What is variation?

Any measure of the extent to which a distribution is not degenerate
(Nagelkerke).

(2w - P = (7O - M) + () - o).

I

Stare (SLO) Re 41/ 46



Scale

Zn: [fnun(ti) — Tmodet (ti)] /é T (i) Zn: I'model (i)

Re == = _ =t
; [rnun (6:) — 1] ;[rnull(ti) —1] ; [fnun (ti) — 1]
= a-+ bzrmodel(ti)
i—1

Re is simply a linear function of the sum of predicted conditional ranks
of failures!
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Example - Cox model

Binary covariate

e — e 5o

E(Re) =2p(1 — P) g s gpe. — 2P(1-P)

3 =5.03 Re = 0.493, E(Rg) = 0.493
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Example - Cox model

Uniform covariate

A

B Re
0.8 | 0.141
1.9 | 0.284
3.0 | 0.435
3.9 | 0.502
5.0 | 0.575
6.9 | 0.667
10.1 | 0.762
13.8 | 0.810
18.8 | 0.863
25.1 | 0.890
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The effect of censoring before the last observed failure

6=1

sample size 250

100 runs Z ~ N/(0,1)
Z ~ Unif[0,1]

Z ~ asymmetric

o = censored data

e — uncensored data
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The effect of censoring before the last observed failure

6=1

sample size 250

100 runs Z ~ N/(0,1)
Z ~ Unif[0,1]

Z ~ asymmetric

o = censored data

e — uncensored data

Conclusion

REe does not depend on censoring before the last observed failure

asymmetric

vvvvvvv

.......
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The effect of censoring at a given time

6=1

sample size 250

100 runs Z ~ N/(0,1)
Z ~ Unif[0,1]

Z ~ asymmetric
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The effect of censoring at a given time

nnnnn | uniform asymmetric

g=1

sample size 250

100 Z~N(0,1 F F f
Porme s MO L b -

Z ~ asymmetric N N H‘H’H/

.....................

Conclusion

The effect of censoring at a given time depends on the covariate
distribution. Possible solution: imputation.
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