Joint models for a longitudinal marker and multivariate survival data

Loïc Ferrer

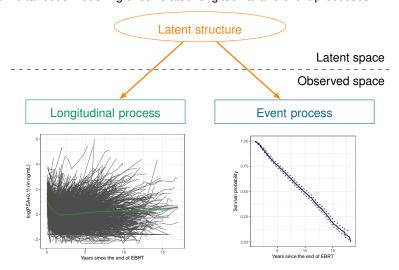
Institut Curie, INSERM U900, Saint-Cloud, France email: loic.ferrer@curie.fr

8th scientific day of the SMAC club Bordeaux

January 24, 2018

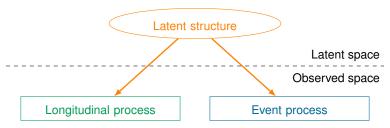
Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes



Joint modelling principle

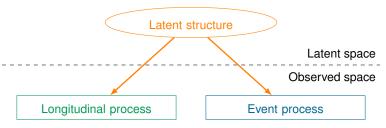
Simultaneous modelling of correlated longitudinal and event processes



- Objectives:
 - Describe the longitudinal process stopped by the event
 - Explore the association between the two processes
 - Predict the risk of event adjusted for the longitudinal process

Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes



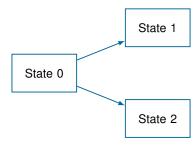
- Latent structure:
 - Function of shared random effects (shared random effect models)¹
 - Homogeneous population
 - Specification and quantification of the association between the two processes
 - ► Latent classes (joint latent class models) ²
 - Heterogeneous population
 - . No assumption on the association
- 1. [Rizopoulos, 2012]
- 2. [Proust-Lima et al., 2014]

Classical joint modelling

- Classical joint models are developed for
 - A Gaussian longitudinal marker
 - Survival data with one single type of event

Extension of the classical joint models

- Many applications require joint models with
 - More complex longitudinal processes
 - ► More complex event processes
 - Survival data with competing events
 - Recurrent events
 - Multi-state process with possible multiple transitions

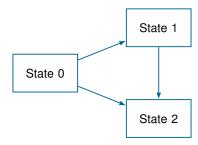


Extension of the classical joint models

- Many applications require joint models with
 - More complex longitudinal processes
 - More complex event processes
 - Survival data with competing events
 - Recurrent events
 - Multi-state process with possible multiple transitions

Extension of the classical joint models

- Many applications require joint models with
 - More complex longitudinal processes
 - ► More complex event processes
 - Survival data with competing events
 - Recurrent events
 - Multi-state process with possible multiple transitions



Introduction Work 1 Work 2 Discussion

Joint multi-state models

- In the literature, very few papers have focused on the succession of events in the joint model setting³
- Focus on
 - A joint multi-state model with shared random effects⁴
 - application: link between PSA & multiple clinical progressions in prostate cancer
 - ► A joint multi-state model with latent classes ⁵
 - application: distinction of profiles of cognitive decline associated with risks of dementia and death in elderly people

^{3. [}Hickey et al., 2018]

^{4. [}Ferrer et al., 2016]

^{5. [}Rouanet et al., 2016]

Statistics in Medicine

Research Article

Received 3 June 2015, Accepted 24 March 2016

Published online in Wiley Online Library

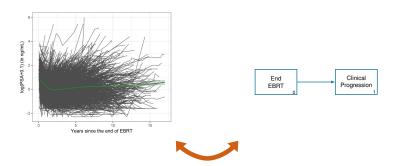
(wileyonlinelibrary.com) DOI: 10.1002/sim.6972

Joint modelling of longitudinal and multi-state processes: application to clinical progressions in prostate cancer

Loïc Ferrer,^{a*†} Virginie Rondeau,^a James Dignam,^b Tom Pickles,^c Hélène Jacqmin-Gadda^a and Cécile Proust-Lima^a

Classical modelling in prostate cancer

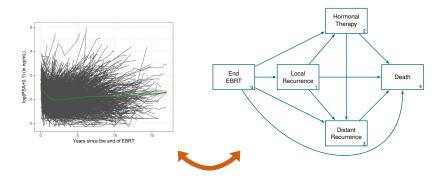
► Longitudinal PSA & clinical progression



- No distinction between the clinical progressions
- No modelling of the full disease progression

Multiple clinical progressions in cancer

Longitudinal PSA & multiple clinical progressions



- Objectives
 - → Understanding the PSA evolution during the patient's follow-up
 - Distinguishing & evaluating the impact of PSA dynamics and other prognostic factors on disease evolution

Notations

 Let us consider two observed processes: one longitudinal and one multi-state

Multi-state process

- ▶ $E_i = \{E_i(t), T_{i0} \le t \le C_i\}$ non-homogeneous Markovian process
 - $E_i(t)$ with values in the finite state space $S = \{0, 1, \dots, M\}$
 - T_{i0} left truncature time, C_i right censoring time
- ▶ $T_i = (T_{i1}, \dots, T_{im_i})^{\top}$ the m_i observed time(s); $T_{ir} < T_{i(r+1)}, \forall r \in S$
- lacksquare $\delta_i = (\delta_{i1}, \dots, \delta_{im_i})^{\top}$ the vector of indicators of observed transition(s)

Longitudinal process

▶ $Y_i = (Y_{i1}, \dots, Y_{in_i})^{\top}$ the n_i measure(s) of marker collected at time(s) t_{i1}, \dots, t_{in_i} , with $t_{in_i} \leq T_{im_i}$

Joint multi-state model

$$\begin{cases} Y_{ij} &= Y_i^*(t_{ij}) + \epsilon_{ij} \\ &= X_i^L(t_{ij})^\top \beta + Z_i(t_{ij})^\top b_i + \epsilon_{ij} \end{cases}$$

$$\begin{cases} \lambda_{hk}^i(t) &= \lim_{dt \to 0} \frac{\Pr(E_i(t+dt) = k|E_i(t) = h)}{dt} \\ &= \lambda_{hk,0}(t) \exp(X_{hk,i}^{E} \gamma_{hk} + W_{hk,i}(b_i,t)^\top \eta_{hk}), \text{ for } (h,k) \in S^2, \end{cases}$$

- $b_i \sim \mathcal{N}_q(0,B), \quad \epsilon_i = (\epsilon_{i1},\ldots,\epsilon_{in_i})^{\top} \sim \mathcal{N}_{n_i}(0,\sigma^2 I), \quad b_i \perp \epsilon_i$
- $\lambda_{hk,0}(t)$ parametric baseline intensity, $X_{hk,i}^{E}$ prognostic factors
- \blacktriangleright $W_{hk,i}(b_i,t)$ structure of dependence, e.g.
 - (true current level)
 - (true current slope)
 - $\begin{array}{lll} & W_{hk,i}(b_i,t) = Y_i^*(t) & \longrightarrow \\ & \blacktriangleright & W_{hk,i}(b_i,t) = \partial Y_i^*(t)/\partial t & \longrightarrow \\ & \blacktriangleright & W_{hk,i}(b_i,t) = \left(Y_i^*(t), \partial Y_i^*(t)/\partial t\right)^\top & \longrightarrow \end{array}$ (both)
 - **...**

Estimation and implementation

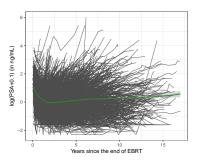
- Maximum likelihood approach
 - ▶ Using $Y_i \perp\!\!\!\perp_{b_i} E_i$
 - Likelihood function

$$L(\theta) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} f_{Y}(Y_{i}|b_{i};\theta) f_{E}(E_{i}|b_{i};\theta) f_{b}(b_{i};\theta) db_{i}$$

- Implementation in R
 - \blacktriangleright Combination and extension of the existing R packages ${\tt JM}$ and ${\tt mstate}$
 - Codes with detailed examples available at https://github.com/LoicFerrer/JMstateModel
 - ► Likelihood computed and optimised using
 - numerical integration algorithms (Gaussian quadratures: multi-step pseudo-adaptive Gauss-Hermite quadratures for the integral over random effects)
 - optimisation algorithms (EM + guasi-Newton)

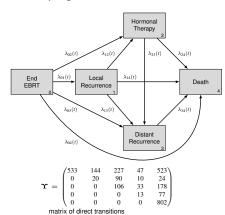
Application

- 2 cohorts of men with localised prostate cancer treated by radiotherapy (N=1474)
- Longitudinal biomarker: PSA



10, [3–21] measures per patient (50th, [5th – 95th] %iles)

 Multi-state representation of the clinical progressions



Ferrer L.

Specification of the joint multi-state model

Model inspired from the literature with one unique type of event

$$\begin{cases} Y_{ij} &= Y_i^*(t_{ij}) + \epsilon_{ij} \\ &= \left(\beta_0 + X_i^{L0} \mathsf{T} \beta_{0,\text{cov}} + b_{i0}\right) + \\ & \left(\beta_1 + X_i^{L1} \mathsf{T} \beta_{1,\text{cov}} + b_{i1}\right) \times \left((1 + t_{ij})^{-1.2} - 1\right) + \\ & \left(\beta_2 + X_i^{L2} \mathsf{T} \beta_{2,\text{cov}} + b_{i2}\right) \times t_{ij} + \epsilon_{ij} \end{cases}$$

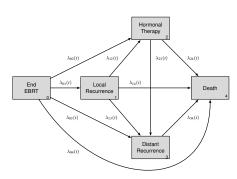
$$\lambda_{hk}^i(t) &= \lambda_{hk,0}(t) \exp\left(X_{hk,i}^{E\mathsf{T}} \gamma_{hk} + \left(\frac{g(Y_i^*(t))}{\partial Y_i^*(t)/\partial t}\right)^\mathsf{T} \begin{pmatrix} \eta_{hk,\text{level}} \\ \eta_{hk,\text{slope}} \end{pmatrix}\right)$$

- $g(Y_i^*(t)) = \log i t^{-1} ((Y_i^*(t) 0.71)/0.44)$
- $ightharpoonup \epsilon_i \sim \mathcal{N}(0, \sigma^2 I_{n_i})$
- $lackbox{b}_i = (b_{i0}, b_{i1}, b_{i2})^\top \sim \mathcal{N}\left(0, D\right), \;\; D \; ext{unstructured}$

Estimates of the association parameters between the longitudinal and multi-state processes

	Value	StdErr	p-value
Level: 01	3.32	0.41	< 0.001
Level: 02	4.89	0.39	< 0.001
Level: 03	2.94	0.68	< 0.001
Level: 04	-0.41	0.23	0.071
Level: 12	1.90	0.83	0.023
Level: 13	-2.30	1.32	0.081
Level: 14	-0.07	0.88	0.939
Level: 23	-0.29	1.04	0.778
Level: 24	-0.48	0.62	0.440
Level: 34	-0.02	0.57	0.974
Slope : 01	1.33	0.33	< 0.001
Slope : 02	1.60	0.24	< 0.001
Slope: 03	1.74	0.54	0.001
Slope: 04	0.59	0.35	0.088
Slope: 12	0.46	0.58	0.336
Slope: 13	3.82	1.07	< 0.001
Slope: 14	0.70	1.02	0.495
Slope : 23	0.23	0.51	0.651
Slope : 24	0.64	0.23	0.005
Slope : 34	-0.56	0.42	0.186

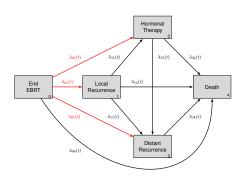
Multi-state representation of the clinical progressions



Estimates of the association parameters between the longitudinal and multi-state processes

	Value	StdErr	p-value
Level: 01	3.32	0.41	< 0.001
Level: 02	4.89	0.39	< 0.001
Level: 03	2.94	0.68	< 0.001
Level: 04	-0.41	0.23	0.071
Level: 12	1.90	0.83	0.023
Level: 13	-2.30	1.32	0.081
Level: 14	-0.07	0.88	0.939
Level: 23	-0.29	1.04	0.778
Level: 24	-0.48	0.62	0.440
Level: 34	-0.02	0.57	0.974
Slope : 01	1.33	0.33	< 0.001
Slope: 02	1.60	0.24	< 0.001
Slope: 03	1.74	0.54	0.001
Slope: 04	0.59	0.35	0.088
Slope: 12	0.46	0.58	0.336
Slope: 13	3.82	1.07	< 0.001
Slope: 14	0.70	1.02	0.495
Slope: 23	0.23	0.51	0.651
Slope : 24	0.64	0.23	0.005
Slope: 34	-0.56	0.42	0.186

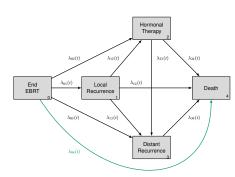
Multi-state representation of the clinical progressions



Estimates of the association parameters between the longitudinal and multi-state processes

	Value StdErr		p-value	
Level: 01	3.32	0.41	< 0.001	
Level: 02	4.89	0.39	< 0.001	
Level: 03	2.94	0.68	< 0.001	
Level: 04	-0.41	0.23	0.071	
Level: 12	1.90	0.83	0.023	
Level: 13	-2.30	1.32	0.081	
Level: 14	-0.07	0.88	0.939	
Level: 23	-0.29	1.04	0.778	
Level: 24	-0.48	0.62	0.440	
Level: 34	-0.02	0.57	0.974	
Slope : 01	1.33	0.33	< 0.001	
Slope: 02	1.60	0.24	< 0.001	
Slope: 03	1.74	0.54	0.001	
Slope: 04	0.59	0.35	0.088	
Slope: 12	0.46	0.58	0.336	
Slope: 13	3.82	1.07	< 0.001	
Slope: 14	0.70	1.02	0.495	
Slope : 23	0.23	0.51	0.651	
Slope : 24	0.64	0.23	0.005	
Slope : 34	-0.56	0.42	0.186	
•				

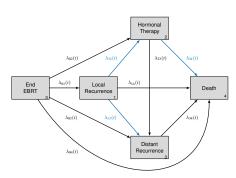
Multi-state representation of the clinical progressions



Estimates of the association parameters between the longitudinal and multi-state processes

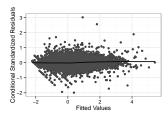
	Value	StdErr	p-value
Level: 01	3.32	0.41	< 0.001
Level: 02	4.89	0.39	< 0.001
Level: 03	2.94	0.68	< 0.001
Level: 04	-0.41	0.23	0.071
Level: 12	1.90	0.83	0.023
Level: 13	-2.30	1.32	0.081
Level: 14	-0.07	0.88	0.939
Level: 23	-0.29	1.04	0.778
Level: 24	-0.48	0.62	0.440
Level: 34	-0.02	0.57	0.974
Slope : 01	1.33	0.33	< 0.001
Slope: 02	1.60	0.24	< 0.001
Slope: 03	1.74	0.54	0.001
Slope: 04	0.59	0.35	0.088
Slope: 12	0.46	0.58	0.336
Slope: 13	3.82	1.07	< 0.001
Slope: 14	0.70	1.02	0.495
Slope: 23	0.23	0.51	0.651
Slope: 24	0.64	0.23	0.005
Slope: 34	-0.56	0.42	0.186

Multi-state representation of the clinical progressions

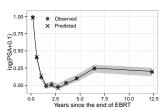


Model diagnostics

- ► Goodness-of-fit plots for the longitudinal process
 - Conditional standardized residuals versus fitted values

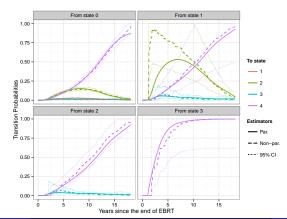


 Observed and predicted values of the biomarker



Model diagnostics (cont'd)

- Goodness-of-fit plots for the longitudinal process
- Goodness-of-fit plot for the multi-state process
 - Predicted transition probabilities from the joint multi-state model and non-parametric probability transitions



BIOMETRICS

DOI: 10.1111/biom.12530

Joint Latent Class Model for Longitudinal Data and Interval-Censored Semi-Competing Events: Application to Dementia

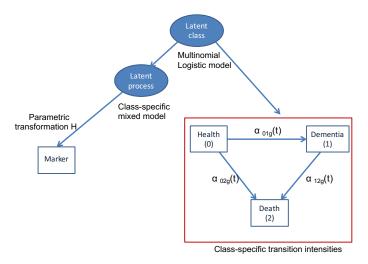
Anaïs Rouanet, ^1,2,* Pierre Joly, ¹ Jean-François Dartigues, ¹,² Cécile Proust-Lima, ¹,² and Hélène Jacqmin-Gadda ¹,²

¹INSERM, Centre INSERM U1912 - Epidemiologie - Biostatistiques, F-33076 Bordeaux, France ²Université de Bordeaux, ISPED, 146 rue Léo Saignat, F-33076 Bordeaux, France *email: anais.rouanet@isped.u-bordeaux2.fr

Application to dementia

- Aim: To distinguish different profiles of cognitive decline associated with risks of dementia and death
- Data: Paquid Cohort (French prospective cohort: Normal and pathological brain ageing)
 - 3777 subjects from Dordogne and Gironde, aged 65 and over
 - Visits every 2/3 years during 25 years
 - Study of Isaacs Set Test [0-40], verbal fluency
- Methodological challenges
 - Heterogeneity in cognitive decline
 - Correlation between cognitive decline and occurrence of dementia
 - Competing risk of death
 - Time-to-dementia onset interval-censored

Joint latent class illness-death model



Joint model formulation

- Membership probability: $p_{ig} = P(c_i = g|X_{pi})$
- Latent process Λ_i, given the class g:

$$\Lambda_i(t_{ij}|c_i = g) = f_1(X_{ij}; \beta_g) + f_2(Z_{ij}; \beta_g) u_{ig}$$

= $X_{ij}^T \beta_g + Z_{ij}^T u_{ig}$

 f_1, f_2 : (possibly nonlinear) functions of time, covariates β_g : class-specific parameters $u_{ig} \sim \mathcal{N}(0, \sigma_v^2 B)$

Transformed gaussian marker Y:

$$\tilde{Y}_{ij} = H(Y_{ij}; \eta) = \Lambda_i(t_{ij}) + \epsilon_{ij} \text{ with } \epsilon_{ij} \sim \mathcal{N}(0, \sigma_e^2)$$

 $H(.; \eta)$: Parametric transformation

Transition intensity from state k to state I for subject i in class g:

$$\alpha_{klig}(t) = \alpha_{klg}^{0}(t) e^{X_{ei}^{\top} \gamma_{klg}}$$

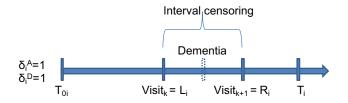
 α_{klg}^0 : class-specific baseline intensity γ_{klg} : class-specific regression parameters

Estimation

- ► Maximum likelihood approach
 - ▶ Using $Y_i \perp\!\!\!\perp_{\varrho} D_i$
 - Log-likelihood function

$$\mathcal{L}(\theta_G) = \sum_{i=1}^{N} \log \left[\sum_{g=1}^{G} p_{ig} f(Y_i | c_i = g; \theta_G) P(D_i | c_i = g; \theta_G) \right]$$

$$- \sum_{i=1}^{N} \log \left[\sum_{g=1}^{G} p_{ig} e^{-A_{01ig}(T_{0i}; \theta_G) - A_{02ig}(T_{0i}; \theta_G)} \right]$$



- Marquardt algorithm for a fixed number of latent classes G
- ▶ G chosen by Bayesian Information Criterion (BIC) minimisation

Model specification

Mixed model, given latent class g:

$$\begin{split} \Lambda_{i}(t) &= \beta_{0g} + u_{ig}^{(0)} + \left[\beta_{1g} - \beta_{2g} + u_{ig}^{(1)}\right](t - \tau_{g}) \\ &+ \beta_{3} \ Educ_{i} + (\beta_{4} - \beta_{5}) \ Educ_{i} \ (t - \tau_{g}) + \beta_{6} \ Sex_{i} \\ \Lambda_{i}(t) &= \beta_{0g} + u_{ig}^{(0)} + \left[\beta_{1g} + \beta_{2g} + u_{ig}^{(2)}\right](t - \tau_{g}) \\ &+ \beta_{3} \ Educ_{i} + (\beta_{4} + \beta_{5}) \ Educ_{i} \ (t - \tau_{g}) + \beta_{6} \ Sex_{i} \\ \end{split} \qquad \qquad \text{if } t \leq \tau_{g}$$

$$u_{ig} = (u_{ig}^{(0)}, u_{ig}^{(1)}, u_{ig}^{(2)})^{\top} \sim \mathcal{N}(0, \sigma_{g}^{2}B), \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$\tilde{Y}_{ij} = H(Y_{ij}; \eta) = \Lambda_{i}(t_{ij}) + \epsilon_{ij} \ \text{with } H : \text{Beta cumulative distribution function} \end{split}$$

▶ Transition intensities from states $k \rightarrow l$ of the multi-state model:

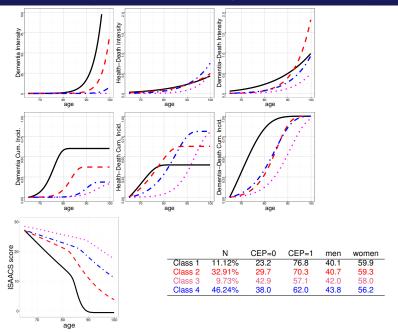
$$\alpha_{klig}(t) = \alpha_{klg}^{0}(t) e^{\gamma_{kls} Sex_i + \gamma_{kle} Educ_i}$$

Model choice

Markovian 106901	Semi-markovian
106901	107055
100001	107055
106270	106356
106081	106177
106005	106091
106027	106107
	106270 106081 106005

Mortality among subjects with dementia depends more on age than on the duration of dementia.

The minimum value of BIC with G = 4 classes.



Discrimination of the posterior classification

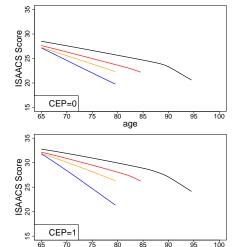
Classification according to:

$$\hat{\pi}_{ig}^{Y,D} = P(c_i = g|Y_i, D_i, \hat{\theta}_G) = \frac{f(Y_i|c_i = g; \hat{\theta}_G)P(D_i|c_i = g; \hat{\theta}_G)P(c_i = g; \hat{\theta}_G)}{\sum_{i}^G f(Y_i|c_i = l; \hat{\theta}_G)P(D_i|c_i = l; \hat{\theta}_G)P(c_i = l; \hat{\theta}_G)}$$

Class	1	2	3	4
1	71.36	21.92	0.18	6.54
2	12.83	61.54	1.24	24.39
3	0.01	0.47	79.11	20.40
4	0.96	19.11	12.96	66.97

Table 1 – Mean probabilities to belong to each class according to the posterior classification.

Estimated trajectories according to dementia onset & death



age

Man with a low/high level of education in 4 different cases:

man alive and dementia-free at 95
$$E(Y(t)|T_i^A>95,T_i^D>95,\delta_i^A=0,\delta_i^D=0;\hat{\theta}_G)$$

man alive and dementia-free at 85

man dead dementia-free at 80

man alive with dementia at 80

Discussion

- Joint models extended to several kinds of multivariate survival data
 - See Hickey G.L. et al. (2018) for a full state-of-the-art
- Ferrer et al. (2016) developed a joint multi-state model with shared random effects to
 - Model the disease evolution in its whole
 - Using an easy-to-use function implemented in R
- Rouanet et al. (2016) developed a joint latent class illness-death model accounting for
 - Heterogeneity in the data
 - Competing risk of death
 - Interval censoring
- Model diagnostics
 - Study of the residuals for validating the model assumptions
 - Graphical comparison of the observations and predictions of the model as goodness-of-fit tool

Discussion (cont'd)

- Goodness-of-fit assessment in joint multi-state models using a score test for the inclusion of a Gaussian frailty term
 - for shared random effect models
 - ► for joint latent class models
- Useful to validate the model assumptions and check its goodness-of-fit
 - Markovian assumption
 - Incomplete adjustment on covariates
 - Presence of non-linear covariate effect
 - Violation of the proportional intensities assumption
- Available at http://github.com/LoicFerrer/JMstateModel/ for shared random effect models
- Submitted for publication in a few days

References

- [1.] Rizopoulos D. (2012). *Joint models for longitudinal and time-to-event data: With applications in R.* Chapman and Hall/CRC.
- [2.] Proust-Lima C., Séne M., Taylor J.M. & Jacqmin-Gadda H. (2014). Joint latent class models for longitudinal and time-to-event data: A review. *Statistical Methods in Medical Research*, 23(1):74–90.
- [3.] Hickey G.L., Philipson P., Jorgensen A. & Kolamunnage-Dona R. (2018). Joint models of longitudinal and time-to-event data with more than one event time outcome: a review. *The International Journal of Biostatistics*, 14(1).
- [4.] Ferrer L., Rondeau V., Dignam J., Pickles T., Jacqmin-Gadda, H. & Proust-Lima C. (2016). Joint modelling of longitudinal and multi-state processes: application to clinical progressions in prostate cancer. *Statistics in Medicine*, 35(22):3933–3948.
- [5.] Rouanet A., Joly P., Dartigues J-F., Proust-Lima C. & Jacqmin-Gadda H. (2016). Joint Latent Class Model for Longitudinal Data and Interval-Censored Semi-Competing Events: Application to Dementia. *Biometrics*, 72(4):1123–1135.

Numerical approximation of the integral over the random effects

Likelihood function

$$L(\theta) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} f_{Y}(Y_{i}|b_{i};\theta) f_{E}(E_{i}|b_{i};\theta) f_{b}(b_{i};\theta) db_{i}$$

► Adaptive Gauss-Hermite rule → Centering and rescaling the integral around its modal value at each step of the optimisation algorithm

Numerical approximation of the integral over the random effects

Likelihood function

$$L(\theta) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} f_{Y}(Y_{i}|b_{i};\theta) \ f_{E}(E_{i}|b_{i};\theta) \ f_{b}(b_{i};\theta) \ db_{i}$$

- ► Adaptive Gauss-Hermite rule → Centering and rescaling the integral around its modal value at each step of the optimisation algorithm
 - Pseudo-adaptive GH rule: based on the posterior distribution of the random effects from the LMM

$$\widetilde{b}_i = \arg\max_{b} \{\log f(Y_i, \frac{b}{\theta_Y})\}$$

and their associated covariance matrix

Numerical approximation of the integral over the random effects

Likelihood function

$$L(\theta) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q}} f_{Y}(Y_{i}|b_{i};\theta) \ f_{E}(E_{i}|b_{i};\theta) \ f_{b}(b_{i};\theta) \ db_{i}$$

- ► Adaptive Gauss-Hermite rule → Centering and rescaling the integral around its modal value at each step of the optimisation algorithm
 - Pseudo-adaptive GH rule: based on the posterior distribution of the random effects from the LMM

$$\widetilde{b}_i = \arg\max_{b} \{\log f(Y_i, b; \widetilde{\theta}_Y)\}$$

and their associated covariance matrix

Multi-step pseudo-adaptive GH rule: based on the posterior distribution of the random effects from the JM

$$\dot{b}_i = \arg\max_{b} \{\log f(E_i, Y_i, b; \dot{\theta})\}$$

and their associated covariance matrix

Joint multi-state model – Implementation in R (1/4)

Example of R code

$$\left\{ \begin{array}{rcl} Y_{ij} & = & Y_i^*(t_{ij}) + \epsilon_{ij} \\ & = & (\beta_0 + \beta_{0,X}X_i + b_{i0}) + (\beta_1 + \beta_{1,X}X_i + b_{i1}) \times t_{ij} + \epsilon_{ij} \\ \lambda_{hk}^i(t|b_i) & = & \lambda_{hk,0}(t) \exp\left(\gamma_{hk}X_i + \eta_{hk,\text{level}}Y_i^*(t) + \eta_{hk,\text{slope}}\partial Y_i^*(t)/\partial t\right) \end{array} \right.$$

where the multi-state process included three states $((h,k) \in \{0,1,2\}^2)$ and three transitions $(0 \to 1, 0 \to 2, 1 \to 2)$,

the log-baseline intensities are a linear combination of cubic-splines

Joint multi-state model – Implementation in R (2/4)

```
# Data peparation to the multi-state framework
tmat <- matrix(NA, 3, 3)
tmat[1, 2:3] <- 1:2
tmat[2, 3] < -3
dimnames(tmat) <- list(from = c("State_0", "State_1", "State_2"),</pre>
                       to = c("State 0", "State 1", "State 2"))
covs <- "X"
data mstate <-
  msprep(time = c(NA, "time_of_State_1", "time_of_State_2"),
         status = c(NA, "State 1", "State 2"),
         data = data surv.
         trans = tmat,
         keep = covs,
         id = "id")
data_mstate <- expand.covs(data_mstate, covs,
                            append = TRUE, longnames = FALSE)
```

Joint multi-state model – Implementation in R (3/4)

Joint multi-state model – Implementation in R (4/4)

```
dForm \leftarrow list(fixed = \sim 1 + X,
              indFixed = c(3, 4),
              random = \sim 1,
              indRandom = 2)
# Joint multi-state model
jointFit_both <-
  JMstateModel(lmeObject = lmeFit,
                survObject = coxFit,
                timeVar = "time",
                parameterization = "both",
                method = "spline-PH-aGH",
                interFact = list(value = ~ strata(trans) - 1.
                                  slope = \sim strata(trans) - 1,
                                  data = data mstate).
                derivForm = dForm,
               Mstate = TRUE,
                data.Mstate = data mstate,
                ID.Mstate = "id",
                control = list(GHk = 9, lnq.in.kn = 3))
```

Joint multi-state model with an additional frailty

Model formulation

$$\begin{cases} Y_{ij} &= X_i^L(t_{ij})^\top \beta + Z_i(t_{ij})^\top b_i + \epsilon_{ij} \\ \lambda_{hk}^i(t) &= \lambda_{hk,0}(t) \exp\left(X_{hk,i}^E {}^\top \gamma_{hk} + W_{hk,i}(b_i,t)^\top \eta_{hk} + \mathbf{v}_i\right), \text{ for } (h,k) \in S^2 \end{cases}$$

- $\triangleright v_i \sim \mathcal{N}(0, \sigma_v^2)$ the frailty term
- $\triangleright v_i \underline{\parallel} b_i, v_i \underline{\parallel} \epsilon_i$
- ▶ Likelihood function $L(\sigma_v^2, \theta)$

$$L(\sigma_{v}^{2},\theta) = \prod_{i=1}^{N} \int_{\mathbb{R}^{q_{b}}} f_{Y}(Y_{i}|b_{i};\theta) f_{b}(b_{i};\theta) \int_{\mathbb{R}} f_{E}(E_{i}|b_{i},v_{i};\theta) f_{v}(v_{i};\theta) dv_{i} db_{i}$$

Score test: score statistic and its variance

$$H_0: \sigma_v^2 = 0$$
 vs $H_1: \sigma_v^2 > 0$

• Score statistic $U(0,\theta) = U(\sigma_v^2 = 0,\theta)$

$$U(0, heta) = \sum_{i=1}^N U_i(0, heta) = \sum_{i=1}^N rac{\partial \log L_i(\sigma_v^2, heta)}{\partial \sigma_v^2} igg|_{\sigma_v^2=0}$$

- Analytic expression
- Asymptotic variance corrected for the estimation of the nuisance parameters

$$\operatorname{Var}\left\{U(0,\theta)\right\} = \left(I_{\sigma_{v}^{2}\sigma_{v}^{2}} - I_{\sigma_{v}^{2}\theta}I_{\theta\theta}^{-1}I_{\theta\sigma_{v}^{2}}\right) \Big|_{\sigma_{v}^{2}=0}$$

Forward finite difference method

Score test: test statistic

Test statistic

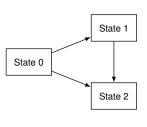
$$T = \begin{cases} 0 & \text{if} \quad U(0, \widehat{\theta}_0) \le 0 \\ \frac{\left\{ U(0, \widehat{\theta}_0) \right\}^2}{\text{Var} \left\{ U(0, \widehat{\theta}_0) \right\}} & \text{if} \quad U(0, \widehat{\theta}_0) > 0 \end{cases}$$

- $lackbox{}{\widehat{ heta}_0}$ the model parameters estimated under the null hypothesis
- ► T follows asymptotically a mixture of chi-square distributions

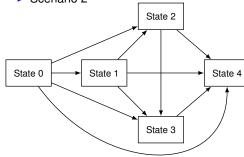
$$T \sim \frac{1}{2}\chi_0^2 + \frac{1}{2}\chi_1^2$$

Assessment by simulation study

Scenario 1



Scenario 2



For each subject i = 1, ..., N of the 500 replicates,

$$\begin{cases} Y_{i}(t) &= Y_{i}^{*}(t) + \epsilon_{i}(t) \\ &= (\beta_{0} + \beta_{0,X}X_{i} + b_{i0}) + (\beta_{1} + \beta_{1,X}X_{i} + b_{i1}) \times t + \epsilon_{i}(t) \\ \lambda_{hk}^{i}(t) &= \lambda_{hk,0}(t) \exp(\gamma_{hk}X_{i} + \eta_{hk,0}Y_{i}^{*}(t) + \eta_{hk,1}\partial Y_{i}^{*}(t)/\partial t + v_{i}) \end{cases}$$

Simulation study - results

► Empirical type-I error rate (nominal level of 5%)

	Scenario 1 (3 states)	Scenario 2 (5 states)	
	$\sigma_v^2 = 0$	$\sigma_{v}^{2}=0$	
	$(\overline{M}=0.70)$	$(\overline{M}=2.84)$	
N = 500	0.008	0.028	
N = 1000	0.010	0.054	
N = 1500	0.020	0.060	

Empirical statistical power (nominal level of 5%)

	Scenario 1 (3 states)		Scenario 2 (5 states)	
	$\sigma_{v}^{2} = 0.5$	$\sigma_v^2 = 1$	$\sigma_{v}^{2} = 0.5$	$\sigma_v^2 = 1$
	$(\overline{M}=0.74)$	$(\overline{M}=0.75)$	$(\overline{M}=2.73)$	$(\overline{M}=2.65)$
N = 500	0.278	0.438	0.884	0.990
N = 1000	0.568	0.850	0.998	1.000
N = 1500	0.846	0.970	1.000	1.000

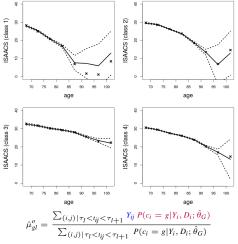
 \overline{M} : average number of observed direct transitions per subject

Score statistic

▶ Score statistic $U(0, \theta)$

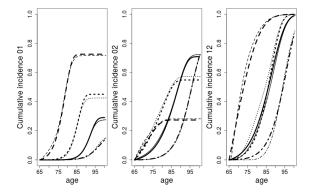
$$\begin{split} U(0,\theta) &= \sum_{i=1}^{N} \frac{1}{2L_{i}(0,\theta)} \times \\ &\int_{\mathbb{R}^{q_{b}}} f_{Y}(Y_{i}|b_{i};\theta) f_{E}(E_{i}|b_{i};0,\theta) f_{b}(b_{i};\theta) \times \\ &\left\{ \left[\sum_{r=0}^{m_{i}-1} \left(\delta_{i(r+1)} + \Lambda_{E_{i}(T_{ir}),E_{i}(T_{ir})}^{i} \left(T_{ir}, T_{i(r+1)}|b_{i};0,\theta \right) \right) \right]^{2} + \\ &\sum_{r=0}^{m_{i}-1} \left(\Lambda_{E_{i}(T_{ir}),E_{i}(T_{ir})}^{i} \left(T_{ir}, T_{i(r+1)}|b_{i};0,\theta \right) \right) \right\} db_{i} \\ &= \sum_{i=1}^{N} \frac{1}{2} \int_{\mathbb{R}^{q_{b}}} f_{b}(b_{i}|Y_{i},E_{i};0,\theta) \right\{ \dots \right\} db_{i} \end{split}$$

Goodness-of-fit of the longitudinal predictions



$$\hat{\mu}^{u}_{gl} = \frac{\sum_{(i,j)|\tau_{l} < t_{lj} < \tau_{l+1}} E(Y_{ij}|c_{i} = g, \hat{u}_{lg}; \hat{\theta}_{G}) P(c_{i} = g|Y_{i}, D_{l}; \hat{\theta}_{G})}{\sum_{(i,j)|\tau_{l} < t_{lj} < \tau_{l+1}} P(c_{i} = g|Y_{i}, D_{l}; \hat{\theta}_{G})}, \text{ with } \hat{u}_{ig} = E(u_{ig}|Y_{i}, \hat{\theta}_{G})$$

Goodness-of-fit of the illness-death predictions



Class-specific cumulative incidences, marginal on covariates: Joint latent class illness-death model vs. Semi-parametric illness-death model with baseline transition intensities modeled by M-splines.