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Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes
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Introduction

Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes

Latent space

Observed space

Longitudinal process Event process

» Objectives:
» Describe the longitudinal process stopped by the event
» Explore the association between the two processes
> Predict the risk of event adjusted for the longitudinal process
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Introduction

Joint modelling principle
Simultaneous modelling of correlated longitudinal and event processes

Latent space

Observed space

Longitudinal process Event process

» Latent structure:
» Function of shared random effects (shared random effect models) !

* Homogeneous population
® Specification and quantification of the association between the two processes

» Latent classes (joint latent class models) 2
e Heterogeneous population
* No assumption on the association

1. [Rizopoulos, 2012]
2. [Proust-Lima et al., 2014]
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Introduction

Classical joint modelling

» Classical joint models are developed for
> A Gaussian longitudinal marker

» Survival data with one single type of event

State 0

State 1

Yy
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Introduction

Extension of the classical joint models

» Many applications require joint models with
» More complex longitudinal processes
» More complex event processes
e Survival data with competing events

e Recurrent events
e Multi-state process with possible multiple transitions

State 1

State 0

[\

State 2

Ferrer L. Joint models for a longif rl ivari January 24, 2018 6/30




Introduction

Extension of the classical joint models

» Many applications require joint models with
> More complex longitudinal processes
» More complex event processes
e Survival data with competing events

* Recurrent events
e Multi-state process with possible multiple transitions

4

State 0 > Event 1 Event 2 >
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Introduction

Joint multi-state models

» In the literature, very few papers have focused on the succession of
events in the joint model setting

» Focus on

> A joint multi-state model with shared random effects
e application: link between PSA & multiple clinical progressions in prostate cancer

> A joint multi-state model with latent classes ®

e application: distinction of profiles of cognitive decline associated with risks of
dementia and death in elderly people

3. [Hickey et al., 2018]
4. [Ferrer et al., 2016]
5. [Rouanet et al., 2016]
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Classical modelling in prostate cancer

» Longitudinal PSA & clinical progression
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» No distinction between the clinical progressions
» No modelling of the full disease progression
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Work 1

Multiple clinical progressions in cancer

» Longitudinal PSA & multiple clinical progressions
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» Objectives
— Understanding the PSA evolution during the patient’s follow-up

— Distinguishing & evaluating the impact of PSA dynamics and other
prognostic factors on disease evolution
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Notations

» Let us consider two observed processes: one longitudinal and one
multi-state

» Multi-state process
> E; ={E;(r), Tp <t < C;} non-homogeneous Markovian process

e E;(r) with values in the finite state space S = {0, 1,...,M}
e Ty left truncature time, C; right censoring time
> 7= (Tu,...,Tin;) " the m; observed time(s); T;r < Ty, 11y,Vr €
> 5= (i1, 6,7,,,)T the vector of indicators of observed transition(s)

» Longitudinal process

> Yi=(Yu,...,Yn) " then; measure(s) of marker collected at time(s)
tity - tings With tin, < Ty,

Joint models for a |
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Joint multi-state model

Yi = Y'(ty) te
= X'(ty) B+Zi(ty) b+ €

Pr(Ei(t + dr) = k|Ei(t) = h)

b = i
e (1) am a
= Awo(t) exp(Xii | v + ni), for (h,k) € §2,
T 2

> s Ei:(Gil,---,Ein;) N./\/’n[(o,()' I), bi |l €
> \io(7) parametric baseline intensity, X,fk,i prognostic factors
> structure of dependence, e.g.

> Wi,i(bi,t) = Y (1) — (true current level)

> Wig,i(bi,t) = 0Yj (1) /0t — (true current slope)

>

Wik,i(bi, 1) = (Y7 (1), 0YF (z)/at)T — (both)
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Estimation and implementation

» Maximum likelihood approach
> Using Y I, Ei
> Likelihood function

N

LO)=T] [ Ailbs0) felEilbi; 0) db;

i=1 /R

» Implementation in R
» Combination and extension of the existing R packages JM and mstate

» Codes with detailed examples available at
https://github.com/LoicFerrer/JMstateModel

> Likelihood computed and optimised using

o numerical integration algorithms (Gaussian quadratures: multi-step
pseudo-adaptive Gauss-Hermite quadratures for the integral over random effects)

e optimisation algorithms (EM + quasi-Newton)
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Work 1

Application

» 2 cohorts of men with localised prostate cancer treated by radiotherapy
(N=1474)

» Longitudinal biomarker: PSA » Multi-state representation of the
clinical progressions

6 Hormonal
Therapy
2
" p0) Aua(r) ) N\ a)
2
5
= 2 End Ao (1) Local Au(r)
2 EBRT Recurrence Eeaty
3 0 1 4
o
= Aos (1) A1) Asar)
-2 Distant
Aoa(r) Recurrence
0 5 15
Years since the end of EBRT
. 533 144 227 47 523
10, [3-21] measures per patient 0 20 90 0 2
th [5th — 95th] o4 T=10 0 106 33 178
(50t [5th — 95t] %iles) 0 0 0 PP

0 0 0 0 802
matrix of direct transitions
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Specification of the joint multi-state model

» Model inspired from the literature with one unique type of event

Yy = Y (%) +e

(Bo + X " Bo.cov + bio) +
(ﬂ +XL1 /Bl cov+bil) ((1+tij)71'271)+
(BZ + XL2 TﬂZ cov + sz) X ttj + €ij

Do (Y (0) ) (Mkrever
" (t) - Ahk’O(Z) P (thl e * (GY*( ) Mhk,slope

> (Y7 (1)) = logit™' (¥} (1) — 0.71)/0.44)
> €~ N(Oagzlni)
> b = (bw, b, bn)" ~ N (0,D), D unstructured
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Work 1

Results

Estimates of the association parameters between
the longitudinal and multi-state processes

Value StdErr p-value
Level : 01 3.32 0.41 < 0.001
Level : 02 4.89 0.39 < 0.001
Level : 03 2.94 0.68 < 0.001
Level : 04 —0.41 0.23 0.071
Level : 12 1.90 0.83 0.023
Level : 13 —2.30 1.32 0.081
Level : 14 —0.07 0.88 0.939
Level : 23 —0.29 1.04 0.778
Level : 24 —0.48 0.62 0.440
Level : 34 —0.02 0.57 0.974
Slope : 01 1.33 0.33 < 0.001
Slope : 02 1.60 0.24 < 0.001
Slope : 03 1.74 0.54 0.001
Slope : 04 0.59 0.35 0.088
Slope : 12 0.46 0.58 0.336
Slope : 13 3.82 1.07 < 0.001
Slope : 14 0.70 1.02 0.495
Slope : 23 0.23 0.51 0.651
Slope : 24 0.64 0.23 0.005
Slope : 34 —0.56 0.42 0.186

Multi-state representation
of the clinical progressions

Hormonal
Therapy
2

Aoa(1) An(n) Aas(r)

End
EBRT

Aus(r)
Local iy
|
Fecurtence
1

Ais()

Distant

Aos(1) Recurrence

> Prognostic factors: advanced initial stage not

always associated with intensities of transitions

between health states after adjustment on PSA
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Model diagnostics

» Goodness-of-fit plots for the longitudinal process

e Conditional standardized e Observed and predicted
residuals versus fitted values values of the biomarker

3- . ]
1.00 ® Observed
X Predicted

log(PSA+0.1)

Conditional Standardized Residuals

T T T T T T
2 4 0.0 25 5.0 7.5 10.0 125
Fitted Values Years since the end of EBRT
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Work 1

Model diagnostics (cont'd)

» Goodness-of-fit plots for the longitudinal process
» Goodness-of-fit plot for the multi-state process

e Predicted transition probabilities from the joint multi-state model and
non-parametric probability transitions
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From state 2 I| From state 3 |

1,007 Estimators
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Transition Probabilities
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=+ 95% Cl
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Application to dementia

» Aim: To distinguish different profiles of cognitive decline associated with
risks of dementia and death

» Data: Paquid Cohort (French prospective cohort: Normal and
pathological brain ageing)

» 3777 subjects from Dordogne and Gironde, aged 65 and over
> Visits every 2/3 years during 25 years
> Study of Isaacs Set Test [0-40], verbal fluency

» Methodological challenges
» Heterogeneity in cognitive decline
» Correlation between cognitive decline and occurrence of dementia
» Competing risk of death
» Time-to-dementia onset interval-censored
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Work 2

Joint latent class illness-death model

Latent
class

Multinomial
Logistic model

Latent
process

Class-specific

Parametric mixed model
transformation t
Health a 019( ) Dementia
(0) (1)
Marker

 ggq(t a q9(t)

Death

()

Class-specific transition intensities
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Joint model formulation
» Membership probability: p;; = P(c; = g|Xpi)
» Latent process A;, given the class g:
Ai(tylei = &) = fi(Xys Be) +f2(Zyj; Be) uig
= leﬂg + Zgu;g

f1, f>: (possibly nonlinear) functions of time, covariates

B, class-specific parameters

uig ~ N (0, O'EB)
» Transformed gaussian marker ¥:

ﬁ‘j = H(Yij' 77) = Ai(tij) + €ij with €jj ~ ./\/’(07 0'3)

H(.;n): Parametric transformation

» Transition intensity from state k to state | for subject i in class g:

-
ouig () = oy, (1) e¥ei W

aj,,: class-specific baseline intensity
Vi - class-specific regression parameters
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Estimation
» Maximum likelihood approach
> Using Y; 1L, D;
> Log-likelihood function

N G
£(06) = Y Tog [ pic f(¥ile: = 806) P(Dile: = 566)
i=1 g=1
N G
_ Z log [Zpig e —Aotig (Toi:0) —Aozig (Toi306) ]
i=1

g=1

Interval censoring

Dementia
6iA=1 I I H I I
6P=1 i
TOi Visitk= I—i Visitk+1 = Ri Ti

» Marquardt algorithm for a fixed number of latent classes G

» G chosen by Bayesian Information Criterion (BIC) minimisation
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Model specification

» Mixed model, given latent class g :

Ai(t) = Pog +uly) + [Brg — Bag + ul) (6 — 1)

+ B3 Educi + (Ba — Bs) Educi (t — 7¢) + Be Sex; if 1t <7
Ai(r) = Bog + ufé?) + [Big + Bog + u,-(gz)} (t—g)
+ B3 Educ; + (B + Bs) Educ; (t — T4) + Be Sex; ift >,

ujg = (u@ , ui(gl> , ul.(;))—r ~ N(0, o'gB), e ~ N(0,02)

8

)~/ij = H(Yj;n) = Ai(tjj) + € with H : Beta cumulative distribution function

» Transition intensities from states k — [ of the multi-state model:

auig(t) = O‘glg (1) e Sexi+-ite Educi
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Model choice
BIC
Markovian ~ Semi-markovian
G=1 106901 107055
G=2 106270 106356
G=3 106081 106177
G=4 106005 106091
G=5 106027 106107

Mortality among subjects with dementia depends more on age than on the duration of
dementia.

The minimum value of BIC with G = 4 classes.
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ISAACS score

N CEP=0 CEP=1 men women
Class1  11.12% 23.2 76.8 40.1 59.9
Class2 32.91% 29.7 70.3 40.7 59.3
Class 3 9.73% 42.9 57.1 42.0 58.0
Class 4  46.24% 38.0 62.0 43.8 56.2
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Discrimination of the posterior classification

Classification according to:

AP Z p(er = o|¥i, Dy, Og) F(Yilei = g 06)P(Dile; = g; 06) Plci = g; 0g)
i - =8 i i»9G) = = = r
® ’ o 6 f(Yile; = 1;06)P(Dile; = 1; 0) P(e; = I; )

Class 1 2 3 4
1 71.36  21.92 0.18 6.54
2 12.83 61.54 1.24 24.39
3 0.01 0.47 79.11 20.40
4 096 19.11 1296 66.97

Table 1 — Mean probabilities to belong to each class according to the posterior
classification.
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Work 2

Estimated trajectories according to dementia onset & death

g J
28
3
o Man with a low/high level of education
3% in 4 different cases:
<
<
DR
CEP=0 . .
a1 , : : : \ 1% man alive and dementia-free at 95 .
& 7 age“ %0 E(r(i)|TA > 95, 7P > 95,84 = 0,87 = 0;6;)
g J

man alive and dementia-free at 85

£ \
o
O
%)
g%
:(( man alive with dementia at 80
DR
0 | CEP=1
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Discussion

v

Joint models extended to several kinds of multivariate survival data
> See Hickey G.L. et al. (2018) for a full state-of-the-art

v

Ferrer et al. (2016) developed a joint multi-state model with shared
random effects to

> Model the disease evolution in its whole
» Using an easy-to-use function implemented in R

v

Rouanet et al. (2016) developed a joint latent class illness-death model
accounting for

> Heterogeneity in the data
» Competing risk of death
> Interval censoring

v

Model diagnostics
» Study of the residuals for validating the model assumptions

> Graphical comparison of the observations and predictions of the model as
goodness-of-fit tool
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Discussion

Discussion (cont’d)

\4

Goodness-of-fit assessment in joint multi-state models using a score test
for the inclusion of a Gaussian frailty term

» for shared random effect models
» for joint latent class models

v

Useful to validate the model assumptions and check its goodness-of-fit
» Markovian assumption
> Incomplete adjustment on covariates
> Presence of non-linear covariate effect

> Viotationof o " .

v

Available at http://github.com/LoicFerrer/JMstateModel/ for
shared random effect models

v

Submitted for publication in a few days
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Discussion
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Discussion

Numerical approximation of the integral over the random effects

» Likelihood function
N
1®) =TT [ s (ibs0) slEloi0) b,
i=1 VR

» Adaptive Gauss-Hermite rule — Centering and rescaling the integral
around its modal value at each step of the optimisation algorithm
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Discussion

Numerical approximation of the integral over the random effects

» Likelihood function
N
1®) =TT [ s (ibs0) slEloi0) b,
i=1 VR

» Adaptive Gauss-Hermite rule — Centering and rescaling the integral
around its modal value at each step of the optimisation algorithm

1. Pseudo-adaptive GH rule: based on the posterior distribution of the random
effects from the LMM

bi = argmax{log (V;, /5 0y)}

and their associated covariance matrix
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Discussion

Numerical approximation of the integral over the random effects

» Likelihood function
N
1®) =TT [ s (ibs0) slEloi0) b,
i=1 VR

» Adaptive Gauss-Hermite rule — Centering and rescaling the integral
around its modal value at each step of the optimisation algorithm

1. Pseudo-adaptive GH rule: based on the posterior distribution of the random
effects from the LMM

b = argmax{logf(V;, ; 0y)}
and their associated covariance matrix

2. Multi-step pseudo-adaptive GH rule: based on the posterior distribution of
the random effects from the JM

by = argmax{log  (£;, ¥;, ; 6)}

and their associated covariance matrix
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Discussion

Joint multi-state model — Implementation in R (1/4)

» Example of R code

Vi = Y +e
_ = (Bo+ BoxXi+bio) + (B1 + BrxXi + bir) X tij + €
A b)) = Auwgo(2) exp (VikXi 4 Mk, 1eve1 Y (8) + Mk, 51000 OYF (1) / O1)

where the multi-state process included three states ((i, k) € {0, 1,2}?) and three
transitions (0 — 1, 0 — 2, 1 — 2),

the log-baseline intensities are a linear combination of cubic-splines

library (mstate)

library (JM)

source ("JMstateModel.R")
load ("data.RData")

# Initialisation of the longitudinal sub-part
ImeFit <- Ime(fixed =Y ~ 1 + X + time + X:time,
data = data_long,

random = ~ (1 + time) | id,
method = "REML",
control = list (opt = "optim"))

Ferrer L. Joint models for a longitudinal marker and multivariate survival data




Discu

Joint multi-state model — Implementation in R (2/4)

# Data peparation to the multi-state framework

tmat <- matrix (NA, 3, 3)

tmat[1l, 2:3] <- 1:2

tmat[2, 3] <- 3

dimnames (tmat) <- list (from = c("State_0", "State_1", "State_2"),
to = c("State_0", "State_1", "State_2"))

covs <— "X"

data_mstate <-
msprep (time = c(NA, "time_of_ State_1", "time_of_State_2"),
status = c(NA, "State_1", "State_2"),
data = data_surv,
trans = tmat,
keep = covs,
id = "id")

data_mstate <- expand.covs (data_mstate, covs,
append = TRUE, longnames = FALSE)

models for a January 24, 2018




Discu

Joint multi-state model — Implementation in R (3/4)

# Initialisation of the multi-state sub-part
coxFit <- coxph(Surv(Tstart, Tstop, status) ~
X.1 + X.2 + X.3 + strata(trans),
data = data_mstate,
method = "breslow", x = TRUE, model = TRUE)

January 24, 2018
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Discu

Joint multi-state model — Implementation in R (4/4)

dForm <- list(fixed = ~ 1 + X,
indFixed = c (3, 4),
random = ~ 1,

indRandom = 2)

# Joint multi-state model
jointFit_both <-
JMstateModel (1lmeObject = lmeFit,

survObject = coxFit,

timeVar = "time",

parameterization = "both",

method = "spline-PH-aGH",

interFact = list(value = ~ strata(trans) - 1,
slope = ~ strata(trans) - 1,
data = data_mstate),

derivForm = dForm,

Mstate = TRUE,

data.Mstate = data_mstate,

ID.Mstate = "id",

control = list(GHk = 9, lng.in.kn = 3))
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Discussion

Joint multi-state model with an additional frailty

» Model formulation

Yi = Xi(ty)'B+Zity) bi+ e
Nu(8) = Nuao (1) exp (Xiied vk + Wiki(bi, 1) 'muic 4 vi) ;- for (h, k) € S

> v ~ N(0,02) the frailty term
> villbi, ville

» Likelihood function L(a?, 0)

L(o},0 H (316 0) (5 6) /fEE\b,,v,, 0) f,(vi: 0) dv; db;
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Score test: score statistic and its variance
H():af:O 'S H1:0‘2,>0
» Score statistic U(0,0) = U(c? = 0,0)
N

N 2
Jdlo L; O'V,e
U(0,0)=>"Ui0,0)=> :%
i=1 v

i=1 oy =0

> Analytic expression

» Asymptotic variance corrected for the estimation of the nuisance
parameters

Var{U(07 0)} = (Iafo'f - 103615911603)

» Forward finite difference method
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Discussion

Score test: test statistic

» Test statistic
0 if U(0,6)) <0
—~ 2

T = {U(Ov 90)}

0 if U(0,60) >0
Var {U(O, 90)}

> 8, the model parameters estimated under the null hypothesis

» T follows asymptotically a mixture of chi-square distributions

L, 15
T~ —vo+ =
2Xo 2Xl
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Discussion

Assessment by simulation study

» Scenario 1 » Scenario 2

State 2

State 1 // \
State 0 State 0 State 1 State 4

State 2 \\

State 3
» For each subjecti = 1,...,N of the 500 replicates,
Yi(t) = Y7 (1) +er)
= (Bo+ BoxXi + bio) + (61 + BixXi + bi) X t + €(t)
i,k(t) = Xik,o(t) exp (vkXi + k0 Y7 () + M1 0Y7 (1) /Ot + vi)
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Simulation study — results

» Empirical type-| error rate (nominal level of 5%)

Scenario 1 (3 states)  Scenario 2 (5 states)

o2=0 o2=0

(M = 0.70) (M =2.84)
N =500 0.008 0.028
N = 1000 0.010 0.054
N = 1500 0.020 0.060

» Empirical statistical power (nominal level of 5%)

Scenario 1 (3 states) Scenario 2 (5 states)
o2 =05 o2 =1 o2 =05 ol =1

M=074) (M=075 (M=273) (M=265)
N =500 0.278 0.438 0.884 0.990
N = 1000 0.568 0.850 0.998 1.000
N = 1500 0.846 0.970 1.000 1.000

M : average number of observed direct transitions per subject
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Score statistic
» Score statistic U(0, 0)

Lo
"=2 300

Sy (Yi|bi; 0)fe(Eilbi; 0, 0)fi(bi; 0) X

R

+

r=0

m;—1
{ [Z i1y + M) iy (Tir Ticray 8550, 0) )

mi—1

Z (AiEi(Tir)in(Tir) (T[” Ti(r41) |bi; 0, 6)) } db;

r=0

—Z fo(bilYi, E0,0) ... }dbi

R



Discussion

Goodness-of-fit of the longitudinal predictions

< 2
= «
@ @
& @
K S
A A
a a
5 5
2] a
o X x
— T —t
7 75 s 8 s %5 10
age
5 3 g
@ P
8 @
] G
S . s
0 0
2 2
a 29 2]
Y — e —
0 75 8 8 %0 % 10 0 75 80 8 % 9% 10
age age

Xy im<iy <y Vi Pl = g%, Dis 06)

Mo = =
Zipm<iy<ng, Plei = 8lYi Dis 66)

E(Yjlei = g, tiygs 0) P(c; = g|Yi, D3 0)

— , With it;, = E(uig|Yi, 6G)
Z(i,j)|7'1<lij<-rl+l P(c; = g|Yi, Dj; 0g)

January 24, 2018




Goodness-of-fit of the illness-death predictions
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Class-specific cumulative incidences, marginal on covariates:
Joint latent class illness-death model vs. Semi-parametric illness-death model with
baseline transition intensities modeled by M-splines.
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