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Introduction Work 1 Work 2 Discussion

Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes

Latent structure

Longitudinal process
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Introduction Work 1 Work 2 Discussion

Joint modelling principle

Simultaneous modelling of correlated longitudinal and event processes

Latent structure

Longitudinal process Event process

Latent space

Observed space

I Objectives:
I Describe the longitudinal process stopped by the event
I Explore the association between the two processes
I Predict the risk of event adjusted for the longitudinal process

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 3 / 30



Introduction Work 1 Work 2 Discussion

Joint modelling principle
Simultaneous modelling of correlated longitudinal and event processes

Latent structure

Longitudinal process Event process

Latent space

Observed space

I Latent structure:
I Function of shared random effects (shared random effect models) 1

• Homogeneous population
• Specification and quantification of the association between the two processes

I Latent classes (joint latent class models) 2

• Heterogeneous population
• No assumption on the association

1. [Rizopoulos, 2012]
2. [Proust-Lima et al., 2014]
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Classical joint modelling

I Classical joint models are developed for
I A Gaussian longitudinal marker

I Survival data with one single type of event

State 0 State 1
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Extension of the classical joint models

I Many applications require joint models with
I More complex longitudinal processes
I More complex event processes

• Survival data with competing events
• Recurrent events
• Multi-state process with possible multiple transitions

State 0

State 1

State 2
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Introduction Work 1 Work 2 Discussion

Extension of the classical joint models

I Many applications require joint models with
I More complex longitudinal processes
I More complex event processes

• Survival data with competing events
• Recurrent events
• Multi-state process with possible multiple transitions

State 0 Event 1 Event 2 . . .
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Extension of the classical joint models

I Many applications require joint models with
I More complex longitudinal processes
I More complex event processes

• Survival data with competing events
• Recurrent events
• Multi-state process with possible multiple transitions

State 0

State 1

State 2
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Joint multi-state models

I In the literature, very few papers have focused on the succession of
events in the joint model setting 3

I Focus on
I A joint multi-state model with shared random effects 4

• application: link between PSA & multiple clinical progressions in prostate cancer

I A joint multi-state model with latent classes 5

• application: distinction of profiles of cognitive decline associated with risks of
dementia and death in elderly people

3. [Hickey et al., 2018]
4. [Ferrer et al., 2016]
5. [Rouanet et al., 2016]
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Classical modelling in prostate cancer

I Longitudinal PSA & clinical progression

End
EBRT

0

Clinical
Progression

1

I No distinction between the clinical progressions
I No modelling of the full disease progression
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Multiple clinical progressions in cancer

I Longitudinal PSA & multiple clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

I Objectives
→ Understanding the PSA evolution during the patient’s follow-up
→ Distinguishing & evaluating the impact of PSA dynamics and other

prognostic factors on disease evolution
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Notations

I Let us consider two observed processes: one longitudinal and one
multi-state

I Multi-state process
I Ei = {Ei(t), Ti0 ≤ t ≤ Ci} non-homogeneous Markovian process

• Ei(t) with values in the finite state space S = {0, 1, . . . ,M}
• Ti0 left truncature time, Ci right censoring time

I Ti = (Ti1, . . . , Timi )
> the mi observed time(s); Tir < Ti(r+1),∀r ∈ S

I δi = (δi1, . . . , δimi )
> the vector of indicators of observed transition(s)

I Longitudinal process
I Yi = (Yi1, . . . , Yini )

> the ni measure(s) of marker collected at time(s)
ti1, . . . , tini , with tini ≤ Timi
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Joint multi-state model



Yij = Y∗i (tij) + εij

= XL
i (tij)

>β + Zi(tij)
>bi + εij

λi
hk(t) = lim

dt→0

Pr(Ei(t + dt) = k|Ei(t) = h)

dt
= λhk,0(t) exp(XE >

hk,i γhk + Whk,i(bi, t)>ηhk), for (h, k) ∈ S2,

I bi ∼ Nq(0,B), εi = (εi1, . . . , εini )
> ∼ Nni (0, σ2I), bi |= εi

I λhk,0(t) parametric baseline intensity, XE
hk,i prognostic factors

I Whk,i(bi, t) structure of dependence, e.g.
I Whk,i(bi, t) = Y∗i (t) −→ (true current level)
I Whk,i(bi, t) = ∂Y∗i (t)/∂t −→ (true current slope)

I Whk,i(bi, t) =
(
Y∗i (t), ∂Y∗i (t)/∂t

)> −→ (both)
I . . .
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Estimation and implementation

I Maximum likelihood approach
I Using Yi |= bi

Ei

I Likelihood function

L(θ) =

N∏
i=1

∫
Rq

fY(Yi|bi; θ) fE(Ei|bi; θ) fb(bi; θ) dbi

I Implementation in R
I Combination and extension of the existing R packages JM and mstate

I Codes with detailed examples available at
https://github.com/LoicFerrer/JMstateModel

I Likelihood computed and optimised using
• numerical integration algorithms (Gaussian quadratures: multi-step

pseudo-adaptive Gauss-Hermite quadratures for the integral over random effects)

• optimisation algorithms (EM + quasi-Newton)
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Application

I 2 cohorts of men with localised prostate cancer treated by radiotherapy
(N=1474)

I Longitudinal biomarker: PSA
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10, [3–21] measures per patient

(50th, [5th – 95th] %iles)

I Multi-state representation of the
clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

Υ =


533 144 227 47 523
0 20 90 10 24
0 0 106 33 178
0 0 0 13 77
0 0 0 0 802


matrix of direct transitions
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Specification of the joint multi-state model

I Model inspired from the literature with one unique type of event

Yij = Y∗i (tij) + εij

=
(
β0 + XL0 >

i β0,cov + bi0
)

+(
β1 + XL1 >

i β1,cov + bi1
)
×
(
(1 + tij)

−1.2 − 1
)

+(
β2 + XL2 >

i β2,cov + bi2
)
× tij + εij

λi
hk(t) = λhk,0(t) exp

(
XE >

hk,i γhk +

(
g(Y∗i (t))
∂Y∗i (t)/∂t

)>(
ηhk,level

ηhk,slope

))

I g(Y∗i (t)) = logit−1((Y∗i (t)− 0.71)/0.44)

I εi ∼ N (0, σ2Ini )

I bi = (bi0, bi1, bi2)
> ∼ N (0,D), D unstructured
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Results

Estimates of the association parameters between
the longitudinal and multi-state processes

Value StdErr p-value
Level : 01 3.32 0.41 < 0.001
Level : 02 4.89 0.39 < 0.001
Level : 03 2.94 0.68 < 0.001
Level : 04 −0.41 0.23 0.071
Level : 12 1.90 0.83 0.023
Level : 13 −2.30 1.32 0.081
Level : 14 −0.07 0.88 0.939
Level : 23 −0.29 1.04 0.778
Level : 24 −0.48 0.62 0.440
Level : 34 −0.02 0.57 0.974
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope : 01 1.33 0.33 < 0.001
Slope : 02 1.60 0.24 < 0.001
Slope : 03 1.74 0.54 0.001
Slope : 04 0.59 0.35 0.088
Slope : 12 0.46 0.58 0.336
Slope : 13 3.82 1.07 < 0.001
Slope : 14 0.70 1.02 0.495
Slope : 23 0.23 0.51 0.651
Slope : 24 0.64 0.23 0.005
Slope : 34 −0.56 0.42 0.186

Multi-state representation
of the clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

I Prognostic factors: advanced initial stage not

always associated with intensities of transitions

between health states after adjustment on PSA

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 17 / 30



Introduction Work 1 Work 2 Discussion

Results

Estimates of the association parameters between
the longitudinal and multi-state processes

Value StdErr p-value
Level : 01 3.32 0.41 < 0.001
Level : 02 4.89 0.39 < 0.001
Level : 03 2.94 0.68 < 0.001
Level : 04 −0.41 0.23 0.071
Level : 12 1.90 0.83 0.023
Level : 13 −2.30 1.32 0.081
Level : 14 −0.07 0.88 0.939
Level : 23 −0.29 1.04 0.778
Level : 24 −0.48 0.62 0.440
Level : 34 −0.02 0.57 0.974
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope : 01 1.33 0.33 < 0.001
Slope : 02 1.60 0.24 < 0.001
Slope : 03 1.74 0.54 0.001
Slope : 04 0.59 0.35 0.088
Slope : 12 0.46 0.58 0.336
Slope : 13 3.82 1.07 < 0.001
Slope : 14 0.70 1.02 0.495
Slope : 23 0.23 0.51 0.651
Slope : 24 0.64 0.23 0.005
Slope : 34 −0.56 0.42 0.186

Multi-state representation
of the clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

I Prognostic factors: advanced initial stage not

always associated with intensities of transitions

between health states after adjustment on PSA

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 17 / 30



Introduction Work 1 Work 2 Discussion

Results

Estimates of the association parameters between
the longitudinal and multi-state processes

Value StdErr p-value
Level : 01 3.32 0.41 < 0.001
Level : 02 4.89 0.39 < 0.001
Level : 03 2.94 0.68 < 0.001
Level : 04 −0.41 0.23 0.071
Level : 12 1.90 0.83 0.023
Level : 13 −2.30 1.32 0.081
Level : 14 −0.07 0.88 0.939
Level : 23 −0.29 1.04 0.778
Level : 24 −0.48 0.62 0.440
Level : 34 −0.02 0.57 0.974
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope : 01 1.33 0.33 < 0.001
Slope : 02 1.60 0.24 < 0.001
Slope : 03 1.74 0.54 0.001
Slope : 04 0.59 0.35 0.088
Slope : 12 0.46 0.58 0.336
Slope : 13 3.82 1.07 < 0.001
Slope : 14 0.70 1.02 0.495
Slope : 23 0.23 0.51 0.651
Slope : 24 0.64 0.23 0.005
Slope : 34 −0.56 0.42 0.186

Multi-state representation
of the clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

I Prognostic factors: advanced initial stage not

always associated with intensities of transitions

between health states after adjustment on PSA

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 17 / 30



Introduction Work 1 Work 2 Discussion

Results

Estimates of the association parameters between
the longitudinal and multi-state processes

Value StdErr p-value
Level : 01 3.32 0.41 < 0.001
Level : 02 4.89 0.39 < 0.001
Level : 03 2.94 0.68 < 0.001
Level : 04 −0.41 0.23 0.071
Level : 12 1.90 0.83 0.023
Level : 13 −2.30 1.32 0.081
Level : 14 −0.07 0.88 0.939
Level : 23 −0.29 1.04 0.778
Level : 24 −0.48 0.62 0.440
Level : 34 −0.02 0.57 0.974
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slope : 01 1.33 0.33 < 0.001
Slope : 02 1.60 0.24 < 0.001
Slope : 03 1.74 0.54 0.001
Slope : 04 0.59 0.35 0.088
Slope : 12 0.46 0.58 0.336
Slope : 13 3.82 1.07 < 0.001
Slope : 14 0.70 1.02 0.495
Slope : 23 0.23 0.51 0.651
Slope : 24 0.64 0.23 0.005
Slope : 34 −0.56 0.42 0.186

Multi-state representation
of the clinical progressions

End
EBRT

0

Local
Recurrence

1

Hormonal
Therapy

2

Distant
Recurrence

3

Death
4

λ02(t) λ12(t) λ23(t) λ24(t)

λ03(t) λ13(t) λ34(t)

λ01(t) λ14(t)

λ04(t)

I Prognostic factors: advanced initial stage not

always associated with intensities of transitions

between health states after adjustment on PSA

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 17 / 30



Introduction Work 1 Work 2 Discussion

Model diagnostics

I Goodness-of-fit plots for the longitudinal process

• Conditional standardized
residuals versus fitted values
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Model diagnostics (cont’d)

I Goodness-of-fit plots for the longitudinal process
I Goodness-of-fit plot for the multi-state process

• Predicted transition probabilities from the joint multi-state model and
non-parametric probability transitions
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Application to dementia

I Aim: To distinguish different profiles of cognitive decline associated with
risks of dementia and death

I Data: Paquid Cohort (French prospective cohort: Normal and
pathological brain ageing)

I 3777 subjects from Dordogne and Gironde, aged 65 and over
I Visits every 2/3 years during 25 years
I Study of Isaacs Set Test [0-40], verbal fluency

I Methodological challenges
I Heterogeneity in cognitive decline
I Correlation between cognitive decline and occurrence of dementia
I Competing risk of death
I Time-to-dementia onset interval-censored
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Joint latent class illness-death model

Class-specific
mixed model

Marker

Latent
process

Class-specific transition intensities

Parametric
transformation H

Health
(0)

Dementia
(1)

Death
(2)

α 01g(t)

α 02g(t) α 12g(t)

Multinomial 
Logistic model

Latent
class
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Joint model formulation
I Membership probability: pig = P(ci = g|Xpi)

I Latent process Λi, given the class g:

Λi(tij|ci = g) = f1(Xij; βg) + f2(Zij; βg) uig

= XT
ijβg + ZT

ij uig

f1, f2: (possibly nonlinear) functions of time, covariates
βg: class-specific parameters
uig ∼ N (0, σ2

g B)

I Transformed gaussian marker Ỹ:

Ỹij = H(Yij; η) = Λi(tij) + εij with εij ∼ N (0, σ2
e )

H(.; η): Parametric transformation

I Transition intensity from state k to state l for subject i in class g:

αklig(t) = α0
klg(t) eX>

ei γklg

α0
klg: class-specific baseline intensity
γklg: class-specific regression parameters
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Estimation
I Maximum likelihood approach

I Using Yi |= g Di

I Log-likelihood function

L(θG) =
N∑

i=1

log
[ G∑

g=1

pig f (Yi|ci = g; θG) P(Di|ci = g; θG)
]

−
N∑

i=1

log
[ G∑

g=1

pig e−A01ig(T0i;θG)−A02ig(T0i;θG)
]

T0i Visitk+1 = Ri

Dementia

Visitk = Li Ti

Interval censoring

δiA=1
δiD=1

I Marquardt algorithm for a fixed number of latent classes G

I G chosen by Bayesian Information Criterion (BIC) minimisation
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Model specification

I Mixed model, given latent class g :

Λi(t) = β0g + u(0)
ig + [β1g − β2g + u(1)

ig ] (t − τg)

+ β3 Educi + (β4 − β5) Educi (t − τg) + β6 Sexi if t ≤ τg

Λi(t) = β0g + u(0)
ig + [β1g + β2g + u(2)

ig ] (t − τg)

+ β3 Educi + (β4 + β5) Educi (t − τg) + β6 Sexi if t ≥ τg

uig = (u(0)
ig , u(1)

ig , u(2)
ig )> ∼ N (0, σ2

g B), εij ∼ N (0, σ2
ε)

Ỹij = H(Yij; η) = Λi(tij) + εij with H : Beta cumulative distribution function

I Transition intensities from states k→ l of the multi-state model:

αklig(t) = α0
klg(t) eγkls Sexi+γkle Educi
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Model choice

BIC
Markovian Semi-markovian

G=1 106901 107055
G=2 106270 106356
G=3 106081 106177
G=4 106005 106091
G=5 106027 106107

Mortality among subjects with dementia depends more on age than on the duration of
dementia.

The minimum value of BIC with G = 4 classes.
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N CEP=0 CEP=1 men women
Class 1 11.12% 23.2 76.8 40.1 59.9
Class 2 32.91% 29.7 70.3 40.7 59.3
Class 3 9.73% 42.9 57.1 42.0 58.0
Class 4 46.24% 38.0 62.0 43.8 56.2
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Discrimination of the posterior classification

Classification according to:

π̂
Y,D
ig = P(ci = g|Yi,Di, θ̂G) =

f (Yi|ci = g; θ̂G)P(Di|ci = g; θ̂G) P(ci = g; θ̂G)∑G
l f (Yi|ci = l; θ̂G)P(Di|ci = l; θ̂G) P(ci = l; θ̂G)

Class 1 2 3 4
1 71.36 21.92 0.18 6.54
2 12.83 61.54 1.24 24.39
3 0.01 0.47 79.11 20.40
4 0.96 19.11 12.96 66.97

Table 1 – Mean probabilities to belong to each class according to the posterior
classification.
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Estimated trajectories according to dementia onset & death
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Discussion

I Joint models extended to several kinds of multivariate survival data
I See Hickey G.L. et al. (2018) for a full state-of-the-art

I Ferrer et al. (2016) developed a joint multi-state model with shared
random effects to

I Model the disease evolution in its whole
I Using an easy-to-use function implemented in R

I Rouanet et al. (2016) developed a joint latent class illness-death model
accounting for

I Heterogeneity in the data
I Competing risk of death
I Interval censoring

I Model diagnostics
I Study of the residuals for validating the model assumptions
I Graphical comparison of the observations and predictions of the model as

goodness-of-fit tool
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Discussion (cont’d)

I Goodness-of-fit assessment in joint multi-state models using a score test
for the inclusion of a Gaussian frailty term

I for shared random effect models
I for joint latent class models

I Useful to validate the model assumptions and check its goodness-of-fit
I Markovian assumption
I Incomplete adjustment on covariates
I Presence of non-linear covariate effect
I Violation of the proportional intensities assumption

I Available at http://github.com/LoicFerrer/JMstateModel/ for
shared random effect models

I Submitted for publication in a few days
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Numerical approximation of the integral over the random effects

I Likelihood function

L(θ) =
N∏

i=1

∫
Rq

fY(Yi|bi; θ) fE(Ei|bi; θ) fb(bi; θ) dbi

I Adaptive Gauss-Hermite rule→ Centering and rescaling the integral
around its modal value at each step of the optimisation algorithm

1. Pseudo-adaptive GH rule: based on the posterior distribution of the random
effects from the LMM

b̃i = arg max
b
{log f (Yi, b; θ̃Y)}

and their associated covariance matrix

2. Multi-step pseudo-adaptive GH rule: based on the posterior distribution of
the random effects from the JM

?

bi = arg max
b
{log f (Ei, Yi, b;

?

θ)}

and their associated covariance matrix
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Joint multi-state model – Implementation in R (1/4)

I Example of R code Yij = Y∗i (tij) + εij
= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1)× tij + εij

λi
hk(t|bi) = λhk,0(t) exp

(
γhkXi + ηhk,levelY∗i (t) + ηhk,slope∂Y∗i (t)/∂t

)
where the multi-state process included three states ((h, k) ∈ {0, 1, 2}2) and three
transitions (0 → 1, 0→ 2, 1→ 2),
the log-baseline intensities are a linear combination of cubic-splines

library(mstate)
library(JM)
source("JMstateModel.R")
load("data.RData")

# Initialisation of the longitudinal sub-part
lmeFit <- lme(fixed = Y ~ 1 + X + time + X:time,

data = data_long,
random = ~ (1 + time) | id,
method = "REML",
control = list(opt = "optim"))
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Joint multi-state model – Implementation in R (2/4)

# Data peparation to the multi-state framework
tmat <- matrix(NA, 3, 3)
tmat[1, 2:3] <- 1:2
tmat[2, 3] <- 3
dimnames(tmat) <- list(from = c("State_0", "State_1", "State_2"),

to = c("State_0", "State_1", "State_2"))

covs <- "X"

data_mstate <-
msprep(time = c(NA, "time_of_State_1", "time_of_State_2"),

status = c(NA, "State_1", "State_2"),
data = data_surv,
trans = tmat,
keep = covs,
id = "id")

data_mstate <- expand.covs(data_mstate, covs,
append = TRUE, longnames = FALSE)
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Joint multi-state model – Implementation in R (3/4)

# Initialisation of the multi-state sub-part
coxFit <- coxph(Surv(Tstart, Tstop, status) ~

X.1 + X.2 + X.3 + strata(trans),
data = data_mstate,
method = "breslow", x = TRUE, model = TRUE)
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Joint multi-state model – Implementation in R (4/4)

dForm <- list(fixed = ~ 1 + X,
indFixed = c(3, 4),
random = ~ 1,
indRandom = 2)

# Joint multi-state model
jointFit_both <-
JMstateModel(lmeObject = lmeFit,

survObject = coxFit,
timeVar = "time",
parameterization = "both",
method = "spline-PH-aGH",
interFact = list(value = ~ strata(trans) - 1,

slope = ~ strata(trans) - 1,
data = data_mstate),

derivForm = dForm,
Mstate = TRUE,
data.Mstate = data_mstate,
ID.Mstate = "id",
control = list(GHk = 9, lng.in.kn = 3))

Ferrer L. Joint models for a longitudinal marker and multivariate survival data January 24, 2018 30 / 30



Introduction Work 1 Work 2 Discussion

Joint multi-state model with an additional frailty

I Model formulation
Yij = XL

i (tij)
>β + Zi(tij)

>bi + εij

λi
hk(t) = λhk,0(t) exp

(
XE >

hk,i γhk + Whk,i(bi, t)>ηhk + vi
)
, for (h, k) ∈ S2

I vi ∼ N (0, σ2
v ) the frailty term

I vi |= bi, vi |= εi

I Likelihood function L(σ2
v , θ)

L(σ2
v , θ) =

N∏
i=1

∫
Rqb

fY(Yi|bi; θ) fb(bi; θ)

∫
R

fE(Ei|bi, vi; θ) fv(vi; θ) dvi dbi
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Score test: score statistic and its variance

H0 : σ2
v = 0 vs H1 : σ2

v > 0

I Score statistic U(0, θ) = U(σ2
v = 0, θ)

U(0, θ) =

N∑
i=1

Ui(0, θ) =
N∑

i=1

∂ log Li(σ
2
v , θ)

∂σ2
v

∣∣∣∣
σ2

v=0

I Analytic expression

I Asymptotic variance corrected for the estimation of the nuisance
parameters

Var {U(0, θ)} =
(

Iσ2
vσ

2
v
− Iσ2

vθ
I−1
θθ Iθσ2

v

) ∣∣∣∣
σ2

v=0

I Forward finite difference method
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Score test: test statistic

I Test statistic

T =


0 if U(0, θ̂0) ≤ 0{

U(0, θ̂0)
}2

Var
{

U(0, θ̂0)
} if U(0, θ̂0) > 0

I θ̂0 the model parameters estimated under the null hypothesis

I T follows asymptotically a mixture of chi-square distributions

T ∼ 1
2
χ2

0 +
1
2
χ2

1
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Assessment by simulation study

I Scenario 1

State 0

State 1

State 2

I Scenario 2

State 0 State 1

State 2

State 3

State 4

I For each subject i = 1, . . . ,N of the 500 replicates,
Yi(t) = Y∗i (t) + εi(t)

= (β0 + β0,XXi + bi0) + (β1 + β1,XXi + bi1)× t + εi(t)

λi
hk(t) = λhk,0(t) exp (γhkXi + ηhk,0Y∗i (t) + ηhk,1∂Y∗i (t)/∂t + vi)
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Simulation study – results
I Empirical type-I error rate (nominal level of 5%)

Scenario 1 (3 states) Scenario 2 (5 states)
σ2

v = 0 σ2
v = 0

(M = 0.70) (M = 2.84)
N = 500 0.008 0.028
N = 1000 0.010 0.054
N = 1500 0.020 0.060

I Empirical statistical power (nominal level of 5%)

Scenario 1 (3 states) Scenario 2 (5 states)
σ2

v = 0.5 σ2
v = 1 σ2

v = 0.5 σ2
v = 1

(M = 0.74) (M = 0.75) (M = 2.73) (M = 2.65)
N = 500 0.278 0.438 0.884 0.990
N = 1000 0.568 0.850 0.998 1.000
N = 1500 0.846 0.970 1.000 1.000

M : average number of observed direct transitions per subject
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Score statistic

I Score statistic U(0, θ)

U(0, θ) =
N∑

i=1

1
2Li(0, θ)

×∫
Rqb

fY(Yi|bi; θ)fE(Ei|bi; 0, θ)fb(bi; θ)×
[

mi−1∑
r=0

(
δi(r+1) + Λi

Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi; 0, θ

))]2

+

mi−1∑
r=0

(
Λi

Ei(Tir),Ei(Tir)

(
Tir, Ti(r+1)|bi; 0, θ

))}
dbi

=
N∑

i=1

1
2

∫
Rqb

fb(bi|Yi,Ei; 0, θ)
{
. . .
}

dbi
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Goodness-of-fit of the longitudinal predictions

µ̂
o
gl =

∑
(i,j)|τl<tij<τl+1

Yij P(ci = g|Yi,Di; θ̂G)∑
(i,j)|τl<tij<τl+1

P(ci = g|Yi,Di; θ̂G)

µ̂
u
gl =

∑
(i,j)|τl<tij<τl+1

E(Yij|ci = g, ûig; θ̂G) P(ci = g|Yi,Di; θ̂G)∑
(i,j)|τl<tij<τl+1

P(ci = g|Yi,Di; θ̂G)
, with ûig = E(uig|Yi, θ̂G)
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Goodness-of-fit of the illness-death predictions

Class-specific cumulative incidences, marginal on covariates:
Joint latent class illness-death model vs. Semi-parametric illness-death model with
baseline transition intensities modeled by M-splines.
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