DCE-imaging biomarker construction in cancer treatment

Statistical tools

<u>Yves ROZENHOLC</u> USPC - Université Paris Descartes Faculté de Pharmacie MERIT - UMR IRD 216

http://up5.fr/rozenholc

- Medical framework and goal
- Automatic clustering DCE image sequences
- Tissue microvascular circulation estimation
- A complex global framework involving registration
- Testing in convolution models

- Medical framework and goal

Angiogenesis: growth of new blood vessels from pre-existing vessels.

IDEA: An early 90's point of view

 $tumor \Rightarrow growth \oplus \Rightarrow energy \Rightarrow glucose \Rightarrow vascularization \oplus$

"Reducing angiogenesis will asphyxiate the tumor".

IDEA:

An early 90's point of view

 $tumor \Rightarrow growth \oplus \Rightarrow energy \Rightarrow glucose \Rightarrow vascularization \oplus$

"Reducing angiogenesis will asphyxiate the tumor".

An interesting but unfortunately wrong idea

However, penalizing angiogenesis induces:

- a regularization of the tumor blood pathways,
- an improvement of the tumor vessel efficiency.

IDEA:

An early 90's point of view

 $tumor \Rightarrow growth \oplus \Rightarrow energy \Rightarrow glucose \Rightarrow vascularization \oplus$

"Reducing angiogenesis will asphyxiate the tumor".

An interesting but unfortunately wrong idea

However, penalizing angiogenesis induces:

- a regularization of the tumor blood pathways,
- an improvement of the tumor vessel efficiency.

Current point of view

At least anti-angiogenesis treatments may help to bring chemical weapons inside the tumor.

"Anti-angiogenesis treatments help to fight tumors from inside".

Materials

A Dynamic Contrast Enhancement - CT (DCE-CT) example

(Loading ... please wait)

Axial CT image of the abdomen showing a liver metastasis. Follow-up of a 80ml injection from Xénétix as contrast agent.

before injection

arterial phase

after arterial phase

veinous phase

Building biomarker in cancer treatment

Discriminating between "responder" and "not responder"

t=0

t=1

- Automatic clustering DCE image sequences

A noisy problem

Typical enhancements

Model:

$$Q^{\times}(t_i) = q^{\times}(t_i) + \sigma \varepsilon_i^{\times}, i = 1 \dots n,$$

Image made of time-series

Problem: We assume that the image \mathcal{X} is made of few clusters that we aim at recover

- $\mathcal{X} = C_1 \cup \ldots \cup C_K$;
- if $x \in C_k$ for k = 1, ..., K, then $\mathbb{E}(Q^x) = q^x =: q_k$;
- if $k \neq \ell$, then $C_k \cap C_\ell = \emptyset$ and $q_k \neq q_\ell$.

Problem: We assume that the image \mathcal{X} is made of few clusters that we aim at recover

- $\mathcal{X} = C_1 \cup \ldots \cup C_K$;
- if $x \in C_k$ for k = 1, ..., K, then $\mathbb{E}(Q^x) = q^x =: q_k$;
- if $k \neq \ell$, then $C_k \cap C_\ell = \emptyset$ and $q_k \neq q_\ell$.

Key idea: Build a test such that "=" should be the research hypothesis H_1 .

$$H_0^{xy}: d^{xy} \neq \vec{0}$$
 v.s. $H_1^{xy}: d^{xy} = \vec{0}$

$$H_1^{xy}: d^{xy} =$$

where $d^{xy} = q^y - q^x$

Problem: We assume that the image \mathcal{X} is made of few clusters that we aim at recover

- $\mathcal{X} = C_1 \cup \ldots \cup C_K$;
- if $x \in C_k$ for k = 1, ..., K, then $\mathbb{E}(Q^x) = q^x =: q_k$;
- if $k \neq \ell$, then $C_k \cap C_\ell = \emptyset$ and $q_k \neq q_\ell$.

Key idea: Build a test such that "=" should be the research hypothesis H_1 .

$$H_0^{xy}: d^{xy} \neq \vec{0}$$
 v.s. $H_1^{xy}: d^{xy} = \vec{0}$

where $d^{xy} = q^y - q^x$

Intersection-Union Test:

 $(\pi_k$ is the projection on a time-partition with 2^k bins)

$$H_0 = \bigcup_L (H_0^k : \|\pi_k(d^{xy})\|^2 \neq 0)$$
 versus $H_1 = \bigcap_L (H_1^k : \|\pi_k(d^{xy})\|^2 = 0).$

Problem: We assume that the image ${\mathcal X}$ is made of few clusters that we aim at recover

- $\bullet \quad \mathcal{X} = C_1 \cup \ldots \cup C_K;$
- if $x \in C_k$ for k = 1, ..., K, then $\mathbb{E}(Q^x) = q^x =: q_k$;
- if $k \neq \ell$, then $C_k \cap C_\ell = \emptyset$ and $q_k \neq q_\ell$.

Key idea: Build a test such that "=" should be the research hypothesis H_1 .

$$H_0^{xy}:d^{xy}\neq \vec{0}$$
 v.s. $H_1^{xy}:d^{xy}=\vec{0}$

where $d^{xy} = q^y - q^x$

Intersection-Union Test:

 $(\pi_k \text{ is the projection on a time-partition with } 2^k \text{ bins})$

$$H_0 = \bigcup_k (H_0^k : \|\pi_k(\mathit{d}^{xy})\|^2 \neq 0) \qquad \text{versus} \qquad H_1 = \bigcap_k (H_1^k : \|\pi_k(\mathit{d}^{xy})\|^2 = 0).$$

Th. (Berger and Hsu,1996): If R_J are α -level rejection regions of H_0^k , then $R = \bigcap_k R_k$ is a α -level rejection region for H_0 . It follows that if p_k is the p-value for H_0^k , then the rejection region $R = \bigcap_k R_k$ has $\max_k (p_k)$ for p-value.

Idea: Use $p(x:y) := \max_k (p_k^{xy})$ as a **dissimilarity measure** in a hierarchical approach.

using multiple equivalence test

Model:
$$Q^{X}(t_{i}) = q^{X}(t_{i}) + \sigma \varepsilon_{i}^{X}$$
, $i = 1...n$, with i.i.d. ε_{i}^{X} together with $Q^{X} = \sum_{x \in X} Q^{X}/n$

Rejection Area:
$$\exists k \text{ s.t. } \|\pi_k D^{XY}\|^2 \leqslant 2^K + \delta^2 - 2\sqrt{(2^K/n + 2\delta^2)\ln\alpha^{-1}} \text{ with } D^{XY} = \frac{Q^X - Q^Y}{\sigma\sqrt{1/|X| + 1/|Y|}}$$
 ensures that if $\|\pi_k d^{XY}\|^2 \leqslant n\delta$, X and Y are clusterized with probability $1 - \alpha$.

Hierarchical clustering with p-values are used as dissimilarity measure

• clustering stops automatically by ensuring that the minimum p-value of s different clusters is smaller than $c_{\alpha}(s)$ with small probability α (type I error):

$$c_{\alpha}(s) = (1-(1-\alpha)^{2/s(s-1)})^{1/(K_0+1)}.$$

A two steps procedure to take into account local and global properties of the tissue/image

Local clustering:

- Starts from a partition made of all voxels as singletons;
- only consider neighbors in four directions: north, south, east, west;
- At each iteration, merge two neighbor clusters with minimal dissimilarity measure.

A two steps procedure to take into account local and global properties of the tissue/image

Local clustering:

- Starts from a partition made of all voxels as singletons;
- only consider neighbors in four directions: north, south, east, west;
- At each iteration, merge two neighbor clusters with minimal dissimilarity measure.

Global clustering: when local clustering stops, change the neighborhood structure in either:

- the neighbors of the neighbors
- all other clusters

A two steps procedure to take into account local and global properties of the tissue/image

Local clustering:

- Starts from a partition made of all voxels as singletons;
- only consider neighbors in four directions: north, south, east, west;
- At each iteration, merge two neighbor clusters with minimal dissimilarity measure.

Global clustering: when local clustering stops, change the neighborhood structure in either:

- the neighbors of the neighbors
- all other clusters

Take away message

Testing equality of dynamics helps to clusterize homogeneous tissue and improve signal to noise ratio!

- Tissue microvascular circulation estimation

Quantities of interest are NOT related to

- blood input,
- contrast agent characteristics.

but are related to bio-medical descriptions of the microvascular circulation.

Parametric model for tissue microvascular circulation with C.A. Cuénod, B. Favetto, V. Genon-Catalot, A. Samson'11.

$$\begin{cases} dQ_P(t)/dt &= \frac{\alpha}{1-h}AIF(t-\delta) - \frac{k}{V_P}Q_P(t) + \frac{k}{V_I}Q_I(t) - \frac{\alpha}{V_P}Q_P(t) \\ dQ_I(t)/dt &= \frac{k}{V_P}Q_P(t) - \frac{k}{V_I}Q_I(t) \end{cases}$$

A simple vision of an inverse problem:

Given AIF and $Q = Q_P + Q_I$ noisily observed at t_0, \ldots, t_n : α , k, V_I , V_P do not depend on \overline{AIF} .

A non parametric complex modelization

Laplace convolution model for microvascularization

Queuing system with one entrance $\cdot/G/\infty$ -type and one exit $(t \in \mathbb{R}_+)$.

- ▶ *AIF*(*t*)
- $partial g(t) := \beta AIF(t \delta)$
- ▶ *Q*(*t*)
- \triangleright S_i

number of arrivals in a rta voxels at time t, AIF(0) = 0number of arrivals in tissue voxel x at time t

number of particles in tissue voxel x at time t

i.i.d. particle sojourn times in tissue voxel x with c.d.f. F

Link between arrivals and sojourn times:

$$\mathbb{E}Q(t) = \int_0^t g(\tau) d\tau - \int_0^t g(t-\tau) * P(S_1 \le \tau) d\tau = \int_0^t g(t-\tau)(1-F(\tau)) d\tau.$$
arrived before time t

Laplace convolution model for microvascularization

Queuing system with one entrance $\cdot/G/\infty$ -type and one exit $(t \in \mathbb{R}_+)$.

- ▶ *AIF*(*t*)
- $partial g(t) := \beta AIF(t \delta)$
- ▶ *Q*(*t*)
- \triangleright S_i

number of arrivals in a rta voxels at time t, AIF(0) = 0number of arrivals in tissue voxel x at time t

number of particles in tissue voxel x at time t

i.i.d. particle sojourn times in tissue voxel x with c.d.f. F

Link between arrivals and sojourn times:

$$\mathbb{E}Q(t) = \int_0^t g(\tau) d\tau - \int_0^t g(t-\tau) * P(S_1 \le \tau) d\tau = \int_0^t g(t-\tau)(1-F(\tau)) d\tau.$$
arrived before time t

Discrete Laplace convolution model with noisy observations:

$$AIF(t_i)$$
 and $Q(t_i) = AIF \otimes \underbrace{\beta(1-F)}_{R}(t_i-\delta) + \sigma\varepsilon_i$,

for $i=1,\ldots,n$ with ε_i independent and identically distributed $\mathcal{N}(0,1)$ and $0\leq t_1\leq\ldots\leq t_n=T_n$.

$$R := \beta(1 - F)$$
 unknown function to estimate

→ ill-posed pb

Laplace deconvolution using Laguerre functions

with F. Comte, C.-A. Cuénod, M. Pensky in JRSS-B 2016

- Consider the $L_2(\mathbb{R}^+)$ orthonormal basis of the Laguerre functions $\phi_k(t) = e^{-t/2}L_k(t)$ for $k \in \mathbb{N}$.
- Consider the decompositions of the functions R, A et Q on this basis:

$$R(t) = \sum_{k=0}^{\infty} r_k \phi_k(t), \quad A(t) = \sum_{k=0}^{\infty} a_k \phi_k(t), \quad Q(t) = \sum_{k=0}^{\infty} Q_k \phi_k(t)$$

• Thanks to Abramovitz, Stegun (1972, 22.13.14):

$$\int_{0}^{t} \phi_{k}(x)\phi_{j}(t-x)dx = \phi_{k+j}(t) - \phi_{k+j+1}(t)$$

$$|Q(t_i) = \int_0^{t_i} A(s)R(t_i - s)ds + \sigma \epsilon_i | \Leftrightarrow | \vec{\mathbf{Q}}_{\infty} = \mathbf{A}_{\infty}\vec{\mathbf{R}}_{\infty} + \sigma \vec{\mathbf{e}}_{\infty} |$$

$$\vec{\mathbf{Q}}_{\infty} = \mathbf{A}_{\infty} \vec{\mathbf{R}}_{\infty} + \sigma \vec{\mathbf{e}}_{\infty}$$

with:

$$\vec{\mathbf{Q}}_{\infty} = \begin{pmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_m \\ \vdots \end{pmatrix}, \quad \mathbf{A}_{\infty} = \begin{pmatrix} a_0 & 0 & \cdots & 0 & \cdots \\ a_1 - a_0 & a_0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \\ a_m - a_{m-1} & \vdots & \cdots & \vdots & \ddots \end{pmatrix}, \quad \vec{\mathbf{R}}_{\infty} = \begin{pmatrix} r_0 \\ r_1 \\ \vdots \\ r_m \\ \vdots \end{pmatrix}.$$

 \Rightarrow Provide a <u>theoretical</u> solution $|\hat{\vec{R}}_{\infty} = A_{\infty}^{-1} \vec{Q}_{\infty}| \dots$ unfortunately not usable.

$$\hat{\vec{\mathbf{R}}}_{\infty} = A_{\infty}^{-1} \vec{\mathbf{Q}}_{\infty}$$

Laplace deconvolution using Laguerre functions

... going from theoretical to practical solution

Consider the truncations at size m of the previous expansions

$$\vec{\mathbf{Q}}_{m} = \begin{pmatrix} Q_{0} \\ Q_{1} \\ \vdots \\ Q_{m} \end{pmatrix}, \quad \mathbf{A}_{m} = \begin{pmatrix} a_{0} & 0 & \cdots & 0 \\ a_{1} - a_{0} & a_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m} - a_{m-1} & \vdots & \cdots & a_{0} \end{pmatrix},$$

and their linear least-square estimates $\hat{\hat{\mathbf{Q}}}_m$, $\hat{\mathbf{A}}_m$ using design matrix $\Phi_m = \left(\phi_k(t_j)\right)_{1 \leq j \leq n, 0 \leq k \leq m}$. Using

$$\hat{\bar{\mathbf{R}}}_m \coloneqq \hat{\mathbf{A}}_m^{-1} J_{m,M} \hat{\bar{\mathbf{Q}}}_M \quad \text{ and } \quad \hat{R}_m(x) \coloneqq \sum_{k=0}^m \hat{\bar{\mathbf{R}}}_m[k] \phi_k(x)$$

the following bias-variance decomposition of the risk holds:

$$\left| \mathbb{E}(\|R - \hat{R}_m\|_2^2) \le \|R - R_m\|_2^2 + \text{Tr}(\Sigma_m) \left[\sigma^2 + \frac{C}{3n}\right] \right|$$

with
$$\Sigma_m = [(\Phi_M{}^T\Phi_M)^{-1}]_m([\mathbf{A}_M\mathbf{A}_M^T]_m)^{-1}$$
 and $J_{m,M} = (Id_m, O_{m,M-m}).$

Chose m using penalized least-squares

Real examples from two DCE-MRI

- A complex global framework involving registration

Dealing with non-rigid movements

slide from Nikos Paragios

Dealing with non-rigid movements

slide from Nikos Paragios

Intensity-based Deformable Registration as Energy Minimization

Dealing with non-rigid movements

figure from Nikos Paragios

A complex but reasonable problem for corresponding intensities

A more complex but still reasonable problem for multi-modalities

Need to

- infer one modality from the other one
- apply sophisticated similarity measures

!!! HOWEVER IMPOSSIBLE WHEN GRAY LEVELS CHANGE DYNAMICALLY !!!

Take home message

Tools to build good DCE imaging biomarkers are available. Tools to solve noise and movement issues are available. However each previous tool fails separately.

PROBLEMS ARE DEEPLY INTERMINGLED:

- Feature extraction needs registration.
- Registration requires similarity measure between dynamics.
- Without deconvolution dynamics change with AIF.
- Deconvolution requires registration.

Dictionary for integrated registration and labeling

going from not so large to complex problem

- Grade DCE sequences from low to high motion.
- Clusterize low motion DCE sequences and retrieve denoised cluster dynamics.
- Deconvole cluster dynamics with respect to AIF to get reproducible parameters of the microcirculation.
- Reduce the set of all reproducible parameters to build a smaller dictionary D. (using mixture models, unsupervised classification, etc)
- For a DCE sequence showing movements
 - Find AIF (easy),
 - Realize $AIF \otimes D$ to get a personalized dictionary of enhancement D_{AIF} ,
 - Use D_{AIF} as input of the AIF-adapted similarity measure
- Improve D with registered DCE sequences iteratively.

When D is optimized, registration of new DCE sequence provides an association "voxel to microcirculation parameter" !!!

D can be large if hierarchical : ensure small registration cost at each level of the hierarchy.

- Testing in convolution models

Direct clustering between DCE as follow-up biomarkers

Example - Responder

Follow-up and propective Biomarker in cancer treatment

 t_0 : Before treatment — t_1 : 1 week — t_2 : 3 months

Direct clustering between DCE as follow-up biomarkers

Example - Not Responder

Follow-up and propective Biomarker in cancer treatment

 t_0 : Before treatment — t_1 : 1 week — t_2 : 3 months

Is the direct comparison as good as an indirect one?

Model:
$$Q^{\times}(t_i) = q^{\times}(t_i) + \sigma \varepsilon_i^{\times}, i = 1 \dots n,$$

Image made of time-series

 $H_0^{xy}:q^x-q^y\equiv 0,$ Tools:

Direct test of nullity

Is the direct comparison as good as an indirect one?

Model: $Q^{X}(t_{i}) = q^{X}(t_{i}) + \sigma \varepsilon_{i}^{X}, i = 1 \dots n,$

Image made of time-series

Tools: $H_0^{xy}:q^x-q^y\equiv 0,$

Direct test of nullity

HOWEVER

Discrete Laplace convolution model with noisy observations:

$$AIF(t_i)$$
 and $Q(t_i) = AIF \otimes \underbrace{\beta(1-F)}_{R}(t_i-\delta) + \sigma\varepsilon_i$,

for i = 1, ..., n with ε_i independent and identically distributed $\mathcal{N}(0,1)$ and $0 \le t_1 \le ... \le t_n = T_n$.

Should we prefer an indirect test for

$$H_0^{xy}: R^x - R^y \equiv 0$$

???

Is the direct comparison as good as an indirect one?

Journal of Statistical Planning and Inference

Volume 141, Issue 5, May 2011, Pages 1849-1861

Testing inverse problems: A direct or an indirect problem?

B. Laurent M., J.-M. Loubes M., C. Marteau A. M.

Is the direct comparison as good as an indirect one?

Journal of Statistical Planning and Inference

Volume 141, Issue 5, May 2011, Pages 1849-1861

Testing inverse problems: A direct or an indirect problem?

B. Laurent M. J.-M. Loubes M. C. Marteau M. M.

Theorem 3.1 Let $(Y_i)_{i>1}$ a sequence obeying to model (3). Let $\alpha, \beta \in (0,1)$ be fixed. Let $\mathcal{E}_{\sigma,\sigma}^{\lambda}(R)$ the ellipsoid defined in (4). We assume that $0 < \sigma < 1$. Then, in the four cases displayed in Table 1, we have

- Every level-α test minimax for H₀^{DP} on E_{c2}^y(R) is also minimax for H₀^{IP} on E_{c2}^x(R),
- There exist level-α tests minimax for H₀^{IP} on ε^χ_{α2}(R) but not for H₀^{DP} on ε^χ_{α2}(R),

where for all $k \ge 1$, $c_k = a_k b_k^{-1}$.

Note that under ellipsoid constraint, previous results hold both for mildly and severely ill-posed problems. Hence the conclusion of this theorem is that testing in the space of observations should be preferred rather than building specific tests designed for inverse problem which will not improve the rates and will introduce additional difficulties.

Direct clustering between DCE images: Is that possible?

How to deal with the non reproducibility of the kernel?

DCE images don't have the same AIF (convolution kernel)! How to realize direct comparison i.e. without deconvolution?

Cross-testing in Laplace convolutions

with R. Castro and I. Dattner

We observe

$$\left. \begin{array}{l} Q_j(t_i) = q_j(t_i) + \sigma_j \varepsilon_j, \\ A_j(t_i) = a_j(t_i) + \tau_j \nu_j, \end{array} \right\} \quad \text{ for } i = 1, \ldots, n.$$

with $q_i = a_i \otimes R_i$, for two DCE sequences indexed by j = 1, 2.

We aim at testing $H_0: R_1 = R_2$ versus $H_1: R_1 \neq R_2$

Classical approach Step 1: Deconvolution to get \hat{R}_1 and \hat{R}_2 ; Step 2: Comparison of \hat{R}_1 and \hat{R}_2 . HOWEVER direct comparison avoids ill-posedness difficulties and should be preferred.

Cross-testing in Laplace convolutions

with R. Castro and I. Dattner

We observe

$$Q_j(t_i) = q_j(t_i) + \sigma_j \varepsilon_j, A_j(t_i) = a_j(t_i) + \tau_j \nu_j,$$
 for $i = 1, ..., n$.

with $q_j = a_j \otimes R_j$, for two DCE sequences indexed by j = 1, 2.

We aim at testing $H_0: R_1 = R_2$ versus $H_1: R_1 \neq R_2$

Classical approach Step 1: Deconvolution to get \hat{R}_1 and \hat{R}_2 ; Step 2: Comparison of \hat{R}_1 and \hat{R}_2 . HOWEVER direct comparison avoids ill-posedness difficulties and should be preferred.

IDEA for direct comparison in between sequences:

$$a_1\otimes q_2-a_2\otimes q_1=a_1\otimes a_2\otimes R_2-a_2\otimes a_1\otimes R_1=a_1\otimes a_2\otimes (R_2-R_1).$$

Thanks to associative and commutative properties of Laplace convolution!

Cross-testing in Laplace convolution models: statistic

We observe

$$Q_j(t_i) = q_j(t_i) + \sigma_j \varepsilon_j, A_j(t_i) = a_j(t_i) + \tau_j \nu_j,$$
 for $i = 1, ..., n$.

with $q_i = a_i \otimes R_i$, for for two DCE sequences indexed by j = 1, 2.

Given some projection estimators \tilde{a}_i of a_i and \tilde{q}_i of q_i , for j=1,2, we consider

$$\begin{split} \tilde{h}: &= & \tilde{a}_1 \otimes \tilde{q}_2 - \tilde{a}_2 \otimes \tilde{q}_1 \\ &= & a_1 \otimes q_2 - a_2 \otimes q_1 \\ &+ \tilde{a}_1 \otimes (\bar{q}_2 - q_2) - \tilde{a}_2 \otimes (\bar{q}_1 - q_1) + (\bar{a}_1 - a_1) \otimes q_2 - (\bar{a}_2 - a_2) \otimes q_1 \quad \text{bias} \\ &+ \tilde{a}_1 \otimes (\tilde{q}_2 - \bar{q}_2) - \tilde{a}_2 \otimes (\tilde{q}_1 - \bar{q}_1) \quad \text{stochastic error} \end{split}$$

where \bar{f} denotes the projection of f.