Tumor size evolution in randomized clinical trials: joint modeling approach and dynamic predictions

Agnieszka KROL 1 Loïc FERRER 1 Jean-Pierre PIGNON 2
Cécile PROUST-LIMA 1 Michel DUCREUX 3 Olivier BOUCHÉ 4
Stefan MICHIELS 2 Virginie RONDEAU 1

1 Biostatistics Team, INSERM U1219, Bordeaux,
2 INSERM U1018 CESP, Gustave Roussy, U. Paris-Sud, Villejuif,
3 Institut Gustave Roussy, Villejuif,
4 Centre Hospitalier Universitaire, Reims

8 April 2016, GSO Workshop, Bordeaux
Tumor evaluations in clinical trials

- **WHO criteria** (1980s)
- **RECIST** (Response Evaluation Criteria in Solid Tumours) v1.0 (2000) and v1.1 (2009)

Comparable assessment of tumor change

- Within a trial (between patients)
- Between trials
Categorical criteria - RECIST and WHO

- **WHO**
 - Bidimensional size, target lesions determined before treatment
 - Progression: >25% increase of one or more target lesions
 - Appearance of new lesions → global progression

- **RECIST (v1.1)**
 - Unidimensional size, max 2 lesions per organ and up to 5 total
 - Progression: >20% increase over smallest sum observed (> 5 mm absolute increase)
 - Appearance of new lesions → global progression

4 categories (Complete Response, Partial Response, Progressive Disease, Stable Disease)

⇒ dichotomization: response or no response / progression or no progression
Measurement of lesions

- The longest diameters measured in the plane in which the images were acquired
- Measure the **longest diameter** of a lesion
- Measure the **longest perpendicular diameter** to it and the burden is their product (WHO criteria)
- **Total individual tumor burden** is the sum (of the longest diameters - RECIST, of the products - WHO)
- Baseline: no more than 4 weeks before treatment, Follow-up: every 6-8 weeks

Measurability of lesions

- **Measurable tumor lesions** - at least one diameter with a **minimum** size of:
 - 10 mm by CT scan
 - 10 mm caliper measurement by clinical exam
 - 20 mm by chest X-ray

Lymph nodes: \(\geq 15\) mm in *short* axis when assessed by CT scan

- **Non-measurable tumor lesions**
 - small lesions (longest diameter <10 mm)
 - truly non-measurable lesions, eg. leptomeningeal disease, ascites, inflammatory breast disease
Objective

Does the continuous tumor size and/or appearance of new lesions enable better prediction of the OS than times of progression?

Observed data

For individual \(i (i = 1, \ldots, N) \) we observe:

- **Longitudinal biomarker**: \(Y_i(t_{ik}) \)

- **Recurrences**: \(T_{ij} = \min(T_{ij}^*, C_i, T_i^*) \) and \(\delta_{ij} = \mathbb{1}\{T_{ij}^* = T_{ij}\} \)

- **Terminal event**: \(T_i = \min(C_i, T_i^*) \) and \(\delta_i = \mathbb{1}\{T_i^* = T_i}\)
Joint model for longitudinal data, recurrent events and a terminal event

System of linear mixed-effects model and two hazard functions:

\[
\begin{align*}
Y_i(t_{ik}) &= m_i(t_{ik}) + \epsilon_i(t_{ik}) = X_{i, l}(t_{ik})^\top \beta_l + Z_i(t_{ik})^\top b_i + \epsilon_i(t_{ik}) \\
r_{ij}(t|v_i, b_i) &= r_0(t) \exp (v_i + X_{ij, r}^\top \beta_r + g(b_i, t)^\top \eta_r) \\
\lambda_i(t|v_i, b_i) &= \lambda_0(t) \exp (\alpha v_i + X_{i, t}^\top \beta_t + h(b_i, t)^\top \eta_t)
\end{align*}
\]

- \(u_i = (b_i^T, v_i)^T \sim \mathcal{N}(0, B) \) with \(B = \begin{pmatrix} B_1 & 0 \\ 0 & \sigma_v^2 \end{pmatrix} \)
- measurement errors iid, \(\epsilon_i(t_{ik}) \sim \mathcal{N}(0, \sigma_\epsilon^2) \)
- \(g(b_i, t) \) and \(h(b_i, t) \) - link functions
- \(r_0(t), \lambda_0(t) \) - baseline hazard functions
Estimation

- Joint marginal likelihood

\[L_i(\theta) = \int_{\mathbf{u}_i} \prod_{k=1}^{n_i} f_{Y_i}(Y_i(t_{ik})|\mathbf{u}_i; \theta) \prod_{j=1}^{r_i} f_{Tr}^j_{ij}(T_{ij}, \delta_{ij}|\mathbf{u}_i; \theta) \cdot f_{Tr}^j_{Tij}(T_i, \delta_i|\mathbf{u}_i; \theta) f_{u_i}(\mathbf{u}_i; \theta) \, d\mathbf{u}_i \]

- \(n_i \) - number of biomarker measurements of individual \(i \),
 \(r_i \) - number of recurrent events of individual \(i \)

- Parameters to estimate \(\theta = (\beta_I^T, \beta_r^T, \beta_t^T, \eta_r^T, \eta_t^T, \alpha, r_0(\cdot), \lambda_0(\cdot), B, \sigma_\varepsilon)^T \)

- Penalized maximum likelihood estimation using Marquardt algorithm

- Baseline hazard functions approximation using splines : smooth estimation

- Integrals approximated using Gauss-Hermite quadrature
Dynamic predictions

- $\mathcal{H}_i(t)$ - history of recurrences of individual i until t
- $\mathcal{Y}_i(t)$ - history of the biomarker of individual i until t

Predicted probability of the terminal event T_i^* in a horizon $[t, t + w]$

$$
P(T_i^* \leq t + w | T_i^* > t, \mathcal{F}_i(t), \mathbf{X}_i; \theta)
$$

$$
\mathcal{F}_i(t) = \mathcal{H}_i(t),
\mathcal{F}_i(t) = \mathcal{Y}_i(t)
$$
or

$$
\mathcal{F}_i(t) = \{\mathcal{H}_i(t), \mathcal{Y}_i(t)\}$$
Measures of predictive abilities

- **EPOCE** (Expected Prognostic Observed Cross-Entropy) *Commenges et al., 2012*
 - Evaluation of conditional density of the event given the individual history
 - Internal validation: approximate cross-validated estimator CVPOLa

- **Brier score**
 - The inverse probability of censoring weighted error estimator (data-based Brier score) *Gerds and Schumacher, 2006*
 - Comparison of predictions and actual observed events
 - Internal validation: k-fold cross-validation
Clinical trial FFCD 2000-05

- **Follow-up:**
 - Phase III randomized multi-center clinical trial (53 centers in France), 407 patients
 - Tumor evaluation every 8 weeks, max 4 target lesions in 2 dimensions
 - Change of line: progression (WHO criteria), unacceptable toxicity, decision of investigator

Ducreux et al., *The Lancet Oncology*, 2011
Clinical trial FFCD 2000-05

Objectives:

- Which of longitudinal biomarker, times of appearance of new lesions or times of progression provide the most accurate prediction of the overall survival?
- To identify the prognostic factors on the outcomes of interest
- To evaluate the treatment effect
Data

- Biomarker definition: sum of the longest diameters

\[SLD_{ij} = \sum_{k=1}^{n_{ij}} d_{ijk}, \quad j = 0, 1, \ldots, n_i, \quad i = 1, \ldots, 407 \]

- \(n_i \in \{0, 1, \ldots, 17\} \) - number of visits of individual \(i \), \(n_{ij} \in \{1, 2, 3, 4\} \) - number of target lesions measured during visit \(j \), \(d_{ijk} \) - max diameter of lesion \(k \) measured during visit \(j \) of individual \(i \)

- Left-censoring
Data : FFCD 2000-05

N=402 patients analyzed. Observed :

- 6.18 tumor size measurements per patient
- 1.05 appearance of new lesions per patient
- 1.82 progression per patient
- 321 deaths
- Overall survival: 16.3 months in the combination (C) arm and 16 months in the sequential (S) arm
Results of the trivariate model

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Biomarker : SLD</th>
<th>New lesions</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est. (SE)</td>
<td>p-value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.90 (0.29)</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td>Time</td>
<td>−0.35 (0.13)</td>
<td>0.006</td>
<td>-</td>
</tr>
<tr>
<td>Treatment (C/S)</td>
<td>−0.20 (0.14)</td>
<td>0.16</td>
<td>0.96 (0.75-1.21)</td>
</tr>
<tr>
<td>Treatment (C/S) × Time</td>
<td>−0.42 (0.15)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>Age (60-69/ <60 years)</td>
<td>0.23 (0.18)</td>
<td>0.20</td>
<td>0.75 (0.56-1.02)</td>
</tr>
<tr>
<td>Age (≥70/ <60 years)</td>
<td>0.02 (0.16)</td>
<td>0.91</td>
<td>0.82 (0.61-1.09)</td>
</tr>
<tr>
<td>Sex (Women/Men)</td>
<td>0.27 (0.14)</td>
<td>0.06</td>
<td>0.86 (0.67-1.10)</td>
</tr>
<tr>
<td>Baseline WHO PS (1/0)</td>
<td>−0.14 (0.15)</td>
<td>0.34</td>
<td>1.16 (0.89-1.51)</td>
</tr>
<tr>
<td>Baseline WHO PS (2/0)</td>
<td>0.45 (0.21)</td>
<td>0.035</td>
<td>2.15 (1.44-3.21)</td>
</tr>
</tbody>
</table>

- Significant decreasing value of **SLD with time** (-0.35), and decreasing with time more pronounced for the **combination** arm (-0.40)
- Strong effect of **WHO performance status 2** on the risk of death, new lesions and on tumor size
- No significant associations with **gender** and **age**
- Significant associations between the processes via the **shared random effects** (except of the link between the biomarker and recurrent events)
Comparison with the alternative models - predictive ability

- Comparison of the models in terms of the **predictive ability** of the overall survival
 - Joint modelling of times of progression and time of death (M1)
 - Joint modelling of times of appearance of new lesions and time of death (M2)
 - Joint modelling of tumor size (SLD) and time of death (M3)
 - Joint modelling of tumor size (SLD), times of appearance of new lesions and time of death (M4)

- Measures of predictive ability using internal validation
 - **Brier score** (10-fold cross-validation)
 - **EPOCE** (CVPOLa - approximated cross-validation)
Results - EPOCE

EPOCE

- M1: Progressions and death
- M2: New lesions and death
- M3: Tumor size and death
- M4: Trivariate model

diff(EPOCE)

- M1/M4
- 95% TI for M1/M4
- M2/M4
- 95% TI for M2/M4
- M3/M4
- 95% TI for M3/M4
Results - Brier score
Conclusion

- Advantages of using joint models for simultaneous analysis of prognostic factors
- Comparison of joint models of different types in terms of predictive accuracy
- Proposition of a new trivariate joint model
- FFCD 2000-05: Improvement of predictive abilities using tumor size and appearance of new lesions
- Implementation of the proposed model into the R package frailtypack

Rondeau et al., 2012
Perspectives

- Incorporation of information on progression of non-target disease
- Application to other clinical trials, in particular to a meta-analysis
- More flexible modeling of the biomarker
 - Parametric approach: two slopes of time
 - Approximation by B-Splines
 - Tumor dynamics modeled using ordinary differential equations *Claret et al., 2009*
References

