Anti-cancer drug discovery: from bench to bedside

Christian BAILLY, Ph.D.
christian.bailly@pierre-fabre.com

Pierre Fabre CDMO

October 2nd, 2015

"The whole process from ideas to drugs"
Drug Discovery & Development

Drug Discovery

- Biology
- Target selection
- Screening
- Hits
- Lead optimisation
- Extensive Pharmacol.
- Preclinical Dev. Tox.

Early Development

- Phase I trials
- Phase II trials
- Phase III trials
- Registration
- Post-launch Activities

F.i.M.

Clinical Development

- 9-16 years
- cost $~1 billion per successful product

A long, difficult, multidisciplinary and expensive process

Pharmaceutical R&D
High risk, high costs
Target selection and validation
- large panel of biochemical, biological assays
- establish the role of a target in the disease
- addressing the cellular pathway
- and the physiopathology

Screening, hit & Lead compounds
- target-based assays and HTS
- compounds management & selection
- extensive chemistry, SAR
- use of in silico approaches
- ADMET properties
- drug design, back up series
Pharmacology
- Mode of action, target modulation
- in vitro, in vivo activities
- ADMET profile
- Proof of Concept in animal
- Efficacy studies
- drug combinations
- PK/PD, metabolism

Preclinical Development
- Batch synthesis, (salts)
- Formulation, stability
- Toxicology studies: safety profile
- g/kg GMP synthesis, scale up
- complete chemical profile
+ dossiers
- Large panels of patient-derived tumor models (in vitro and in vivo) representing the heterogeneity of the disease
- Extensive data on the characteristics of these tumor models
- Orthotopic models, metastasizing models, imaging models

Translational Research

- Large panels of tumor models (in vitro and in vivo) representing the heterogeneity of the disease
- Corresponding tumor tissue bank
- Genetically engineered models (inducible knock out and knock in models, isogenic models)

- Homogeneous, standardized in vitro tumor models, naturally or genetically engineered with target over or under expression for screening (isogenic models)
- Corresponding homogeneous, standardized in vivo tumor models, natural or genetically engineered, with target over or under expression for pharmacodynamic optimization
- Models for pharmacokinetic/pharmacodynamic correlation studies in different species (mouse, rat and/or non-rodent species)
- Models for evaluation of side effects (toxicology) in correspondence to pharmacodynamic effects
TARGET SELECTION:
Scientific, Medical, Economical, & Strategic Considerations

Picking the right target is key... but confirmed only 10 years later
- by isolating active ingredients from traditional remedies

- by random screening of chemical libraries, including Nat. Prod.

- by rational design: based on understanding the metabolic pathways related to a disease state or pathogen, and manipulating these pathways using chemistry, mol./cell. biology and biochemistry

- by repositioning

- by serendipity…
Serendipitous Drug Discoveries

How an accidental discovery paved the way for the treatment of complicated infantile haemangiomas
A revolution in the management of infantile haemangiomas.
Drug screening & design

- **High throughput screening**: compound libraries, multi-well plates (96, 384, 1536), robotics

- **Knowledge-based rational design**: computer modeling, structural analysis (NMR, X-ray crystal, etc), chemoinformatics…

- Hit optimisation, lead selection, drug candidate
 - iterative cycles of chemistry and biology (cpd MoA, potency, SAR, selectivity, stability…)
 - Physicochemical properties (solubility, purity, complexity…)
 - ADME, DMPK, imaging, in vivo profiling…
 - initial safety assessment (preliminary Tox, predictive Tox)
 - innovation (I.P., patents): breakthroughs target/NCE, 2nd generation, formulation, etc…
 - potential market, time to market (RoI)

 - *Molecular attrition: From « >100,000 » cpds to « 3-5 » pre-candidate*
 - *A major challenge to combine all desired properties into one molecule*
 - *… back-up and follow up programs*
Rational Design: ALK inhibitors

- Search for "oncogenic drivers" and development of targeted therapies.

- Discovery of the EML4-ALK fusion gene in a subgroup (<5%) of patients with NSCLC (2007)

- Accelerated approval of breakthrough therapy-designated drugs
 - Crizotinib in 2011, 2013 (Xalkori, Pfizer)
 [4 years from the discovery of ALK rearrangement in NSCLC to the FDA approval]
 - Ceritinib in 2014 (Zykadia, Novartis)
Structure activity relationship optimization campaign

1 HTS hit \rightarrow 50-300 derivatives \rightarrow 1 optimized Lead
Models to evaluate mechanism of action & antitumor activity

Step 1: from in vitro to in vivo
- Optical imaging (cellular, intravital and whole animal)

Step 2: from in vivo to clinical use
- CT
- PET
- Ultrasound
- MRI
- SPECT

Two-dimensional cell cultures
- CAM assay
- Organoid three-dimensional cultures
- Zebrafish
- Intravital window

Clinical studies
- GEMMs
- Tissue slices

- Cell-line-based, subcutaneous xenografts
- PDXs
- Orthotopic xenografts
Failure: The Reality of Drug Discovery

Historically, the majority of Hit-to-Lead and Lead Optimization programs fail to deliver a preclinical candidate due to:

- Lack of efficacy (in animal models)
- Unexpected toxicity
- Poor pharmacokinetics

If you must fail...

“Fail early, fail cheap”
Preclinical safety studies

- To explore the response at up to maximum achievable doses
- To detect potential hazards and assess risks (general toxicology, geno-tox, carcinogenicity, repro-tox, etc…)
- To assist in dose-selection for initial clinical studies
- To suggest markers to monitor safety in humans
- To guide target-based investigations

- But not
 - to guarantee safety in humans
 - to predict human response
 - to define a mechanism
From molecules to medicines

Drug Substance (API)
- Cost to produce
- Scalability
- Analytical methods
- Stability

Drug Product (Formulated API)
- Cost to produce
- Scalability
- Analytical methods
- Stability
- Packaging and storage

- Chemical Development
- Pharmaceutical Development
CMC: Chemistry, Manufacturing and Controls

- Preformulation / API stress studies
- Formulation: selection of prototype for early clinical studies.
- Process development to select sterilizing method
- Formulation optimization (final strength) for commercial product.
- Scaling-up and process validation
- Long term stability studies

Formulation development
- pH solubility and stability profiles
- Additional preformulation studies: sensitivity to light, oxygen, temperature…
- Prototype formulation studies to select the best formulation based on stability studies (minimizing degradation products)
- Choice of the final strength for clinical and manufacturing

Process development
- Selection of the sterilisation method.
- Scale-up and process validation
- Manufacturing clinical batches for clinical studies
Clinical Development

USA: Investigational New Drug (IND) application:
• Animal Pharmacology and Toxicology Studies - Preclinical data to permit an assessment as to whether the product is reasonably safe for initial testing in humans.
• Manufacturing Information - Information pertaining to the composition, manufacturer, stability, and controls used for manufacturing the drug substance and the drug product.
• Clinical Protocols and Investigator Information - Detailed protocols for proposed clinical studies to assess whether the initial-phase trials will expose subjects to unnecessary risks.

Europe: Investigational Medicinal Product Dossier (IMPD), for approval of clinical trials by the competent authorities
Phase I: First in Man
- Small group of healthy volunteers or patients
- Determine the active dose or MTD
- Verify the mechanism of action: target modulation
- Determine a safe dose range and identify side effects
- Test potential biomarkers
+ Preliminary information on efficacy

In general, heterogeneous tumor indications (s.t.)

Phase II: Efficacy studies
- Larger group of patients (50-300)
- Evaluate activity, efficacy: POC
- Determine effective dose range
- Route and scheme of treatment
- Further evaluate the safety
- Biomarkers
- (Combinations)
Phase III: Comparative studies
- Large group of patients (>500, >>)
- Comparative efficacy vs. used treatments
- Monitor side effects
- Dose range
- Safety
- Biomarker validation

Registration of a new drug
- Compile preclinical and clinical data
- Quality of data (biometry, statistics)
- Manufacturing process
- Submit NDA to regulatory authorities:
 - quality + efficacy + safety
- NDA, from submission to approval:
 → ~2 years (2 months–7 years)
 → Marketing authorization granted
 → Launching, commercialization

Specific tumor indications
- BC, NSCLC, PC, etc…

F.I.M.
- Phase I trials
- Phase II trials
- Phase III trials
- Registration
- Post-launch Activities
Clinical Development

- Phase I trials
- Phase II trials
- Phase III trials
- Registration
- Post-launch Activities

Phase IV & post-launch activities
- Drug on the market
- Post-market surveillance
- Continue to monitor and report adverse effects
- Life-cycle management: new indications and/or formulations

several years after the use in wide population, the risk remains

Ex: rofecoxib (Vioxx), unacceptable cardiac side-effects ➔ removed
R&D productivity over the past 60 years: on decline

- FDA tightens regulation post thalidomide
- FDA clears backlog following PDUFA regulations and perhaps relaxes on HIV drugs
Productivity of the pharma industry

Finding the true cost of a new drug is complex and controversial...

Cost of a new drug in US$ (billions)*

Data: USFDA, PhRMA

* New drug cost and R&D spend could be 30% higher if non-PhRMA members are included
CANCER is an attractive therapeutic field for pharmaceutical companies
- new targets, multiple indications
- high price of drugs « tolerated » (thus far)

But a field with a limited success: *from F.i.M. to registration 90-95% attrition*

Why is cancer drug discovery so difficult?

Alexander Kamb, Susan Wee and Christoph Lengauer

*NATURE REVIEWS | DRUG DISCOVERY
VOLUME 6 | FEBRUARY 2007 | 115*
Drug repositioning

De novo drug discovery and development
- 10–17 year process
- <10% overall probability of success

Drug repositioning
- 3–12 year process
- Reduced safety and pharmacokinetic uncertainty

Figure 2 | A comparison of traditional de novo drug discovery and development versus drug repositioning.

(Nat. Rev. Drug Discov. 2004, 3, 675)
Ex: repositioning of anti-depressant drugs

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Repositioned antidepressant drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic (MOA)</td>
<td>Original indication (trade name; originator)</td>
</tr>
<tr>
<td>Bupropion (enhancement of noradrenaline function)</td>
<td>Depression (Wellbutrin; GlaxoSmithKline)</td>
</tr>
<tr>
<td>Dapoxetine (SSRI)</td>
<td>Analgesia and depression (N/A; Eli Lilly)</td>
</tr>
<tr>
<td>Duloxetine (NSRI)</td>
<td>Depression (Cymbalta; Eli Lilly)</td>
</tr>
<tr>
<td>Fluoxetine (SSRI)</td>
<td>Depression (Prozac; Eli Lilly)</td>
</tr>
<tr>
<td>Milnacipran (NSRI)</td>
<td>Depression (Ixel; Pierre Fabre Médicament)</td>
</tr>
</tbody>
</table>

Notes:
- **dep**ression
- fibromyalgia
vinorelbine (Navelbine®)

Catharanthine + Vindoline \[\rightarrow\] Anhydrovinblastine

Vinorelbine

injectable Navelbine (1989)

oral Navelbine (2001)
Vinflunine (JAVLOR®)

- 1988: HF & vinca-alcaloïdes
- 1991: 50 mg of PM391
- 1994: *in vivo* activity
- 1996: vinflunine
- 1998: Phase I
- 2000: Phase II
- 2003: Phase III
- 2009: EMEA Approval, bladder cancer
VFL: reduced affinity for tubulin dimers

Table 1. Equilibrium Constants for Vinca-Tubulin Interaction

<table>
<thead>
<tr>
<th>Drug</th>
<th>$K_1(M^{-1})$</th>
<th>$K_2(M^{-1})$</th>
<th>$K_1K_2(M^{-2})$*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincristine</td>
<td>1.4×10^5</td>
<td>1.7×10^7</td>
<td>2.3×10^{12}</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>1.2×10^5</td>
<td>5.1×10^6</td>
<td>6.1×10^{11}</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>1.3×10^5</td>
<td>1.1×10^6</td>
<td>1.4×10^{11}</td>
</tr>
<tr>
<td>Vinflunine</td>
<td>8.8×10^4</td>
<td>3.0×10^5</td>
<td>2.6×10^{10}</td>
</tr>
</tbody>
</table>

Abbreviations: K_1, affinity of drug for tubulin heterodimers; K_2, affinity of liganded heterodimers for spiral polymers; K_1K_2, overall affinity for tubulin.

*In the presence of guanosine triphosphate at 25°C.

(Lobert & Puozzo, Sem. Oncol. 2008, 35, S28)
(Lobert & Correia, Methods Enzymol. 2000, 323, 77)

« weak » affinity for tubulin → fewer and smaller spiral filaments → reduced neurotoxicity
VFL: high intra-cellular accumulation

Figure 3. Differential uptake of 3H-vinca alkaloids. Uptake of 3H-vinflunine (Δ); 3H-vinorelbine (○); 3H-vinblastine (□); 3H-vincristine (●) in P388 murine leukemia cells.

(Lobert & Puozzo, Sem. Oncol. 2008, 35, S28)
Vinflunine activity in bladder cancer

VFL increases lifespan of mice with bladder cancer

Intravesically-implanted murine MB-49 bladder cancer
Phase III Trial of Vinflunine Plus Best Supportive Care Compared With Best Supportive Care Alone After a Platinum-Containing Regimen in Patients With Advanced Transitional Cell Carcinoma of the Urothelial Tract

from Bellmunt et al., J. Clin. Oncol. 2009, August

Fig 3. Overall survival (OS) in the eligible population (n = 357; 96.5% of intent-to-treat population). VFL, vinflunine; BSC, best supportive care.
Vinflunine (JAVLOR®)

- 1991: PM391
- 1994: *in vivo* activity
- 1996: vinflunine
- 1998: Phase I
- 2000: Phase II
- 2003: Phase III
- 2009: EMEA Approval, 1st indication